• Home
  • Search Results
  • Flexible and stretchable metallic glass micro- and nano-structures of tunable properties.

Flexible and stretchable metallic glass micro- and nano-structures of tunable properties.

Nanotechnology (2018-12-14)
Haijie Xian, Ming Liu, Xiaochen Wang, Fangfu Ye, Ping Wen, Haiyang Bai, Yanhui Liu, Weihua Wang
ABSTRACT

Flexible and stretchable nanostructures have broad technological applications. Although nanostructures synthesized with metallic glasses, the alloys being of amorphous atomic structure, exhibit superior properties, they are typically too rigid to be used as flexible materials with existing synthesis techniques. In this study we report periodic and crumpled metallic glass nanostructures that can accommodate a large amount of stretching. We demonstrate that their morphologies and characteristic length scale can be well controlled, and that feature sizes as small as ∼200 nm can be readily achieved. With their integrity maintained, the nanostructures can be stretched to a strain of ∼100%, leading to broadly tunable properties. The approach is not limited to specific metallic glasses, but is applicable to a wide range of glass-forming alloys. This not only enables metallic glasses to be used under extreme stretching conditions, but also helps in the exploration of new functionalities of glassy materials.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Cholera Toxin from Vibrio cholerae, ≥90% (SDS-PAGE), lyophilized powder
Sigma-Aldrich
Insulin from bovine pancreas, γ-irradiated, BioXtra, suitable for cell culture, potency: ≥20 units/mg (USP units), lyophilized powder