• Home
  • Search Results
  • Synthetic anionic surfaces can replace microparticles in stimulating burst coagulation of blood plasma.

Synthetic anionic surfaces can replace microparticles in stimulating burst coagulation of blood plasma.

Colloids and surfaces. B, Biointerfaces (2018-12-24)
Angel Contreras-García, Noelia L D'Elía, Maxime Desgagné, Charles-Hubert Lafantaisie-Favreau, Georges-Etienne Rivard, Juan-Carlos Ruiz, Michael R Wertheimer, Paula Messina, Caroline D Hoemann
ABSTRACT

Biomaterials are frequently evaluated for pro-coagulant activity but usually in the presence of microparticles (MPs), cell-derived vesicles in blood plasma whose phospholipid surfaces allow coagulation factors to set up as functional assemblies. We tested the hypothesis that synthetic anionic surfaces can catalyze burst thrombin activation in human blood plasma in the absence of MPs. In a thromboelastography (TEG) assay with plastic sample cups and pins, recalcified human citrated platelet-poor plasma spontaneously burst-coagulated but with an unpredictable clotting time whereas plasma depleted of MPs by ultracentrifugation failed to coagulate. Coagulation of MP-depleted plasma was restored in a dose-dependent manner by glass microbeads, hydroxyapatite nanoparticles (HA NPs), and carboxylic acid-containing anionic nanocoatings of TEG cups and pins (coated by glow-discharge plasma-polymerized ethylene containing oxygen, L-PPE:O with 4.4 and 6.8 atomic % [COOH]). Glass beads lost their pro-coagulant activity in MP-depleted plasma after their surfaces were nanocoated with hydrophobic plasma-polymerized hexamethyl disiloxane (PP-HMDSO). In FXII-depleted MP-depleted plasma, glass microbeads failed to induce coagulation, however, FXIa was sufficient to induce coagulation in a dose-dependent manner, with no effect of glass beads. These data suggest that anionic surfaces of crystalline, organic, and amorphous solid synthetic materials catalyze explosive thrombin generation in MP-depleted plasma by activating the FXII-dependent intrinsic contact pathway. The data also show that microparticles are pro-coagulant surfaces whose activity has been largely overlooked in many coagulation studies to-date. These results suggest a possible mechanism by which anionic biomaterial surfaces induce bone healing by contact osteogenesis, through fibrin clot formation in the absence of platelet activation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Supelco
Micro particles based on polystyrene, dark red, size: 10 μm

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.