• Home
  • Search Results
  • Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits.

Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits.

Neuron (2018-05-01)
Anna Cavaccini, Marta Gritti, Andrea Giorgi, Andrea Locarno, Nicolas Heck, Sara Migliarini, Alice Bertero, Maddalena Mereu, Giulia Margiani, Massimo Trusel, Tiziano Catelani, Roberto Marotta, Maria Antonietta De Luca, Jocelyne Caboche, Alessandro Gozzi, Massimo Pasqualetti, Raffaella Tonini
ABSTRACT

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.

MATERIALS
Product Number
Brand
Product Description

Supelco
Serotonin, analytical standard
Sigma-Aldrich
SR-95531, ≥98% (HPLC), powder
Sigma-Aldrich
AM251, >98% (HPLC), solid
Sigma-Aldrich
GR 113808, ≥98% (HPLC), solid
Sigma-Aldrich
SB-271046A, ≥98% (HPLC)
Sigma-Aldrich
Protein Kinase Inhibitor from rabbit, ≥85% (HPLC)
Sigma-Aldrich
Autocamtide 2-related inhibitory peptide, ≥97% (HPLC), lyophilized powder