• Home
  • Search Results
  • Suppressing UPR-dependent overactivation of FGFR3 signaling ameliorates SLC26A2-deficient chondrodysplasias.

Suppressing UPR-dependent overactivation of FGFR3 signaling ameliorates SLC26A2-deficient chondrodysplasias.

EBioMedicine (2019-01-28)
Chao Zheng, Xisheng Lin, Xiaolong Xu, Cheng Wang, Jinru Zhou, Bo Gao, Jing Fan, Weiguang Lu, Yaqian Hu, Qiang Jie, Zhuojing Luo, Liu Yang
ABSTRACT

Mutations in the SLC26A2 gene cause a spectrum of currently incurable human chondrodysplasias. However, genotype-phenotype relationships of SLC26A2-deficient chondrodysplasias are still perplexing and thus stunt therapeutic development. To investigate the causative role of SLC26A2 deficiency in chondrodysplasias and confirm its skeleton-specific pathology, we generated and analyzed slc26a2-/- and Col2a1-Cre; slc26a2fl/fl mice. The therapeutic effect of NVP-BGJ398, an FGFR inhibitor, was tested with both explant cultures and timed pregnant females. Two lethal forms of human SLC26A2-related chondrodysplasias, achondrogenesis type IB (ACG1B) and atelosteogenesis type II (AO2), are phenocopied by slc26a2-/- mice. Unexpectedly, slc26a2-/- chondrocytes are defective for collagen secretion, exhibiting intracellular retention and compromised extracellular deposition of ColII and ColIX. As a consequence, the ATF6 arm of the unfolded protein response (UPR) is preferentially triggered to overactivate FGFR3 signaling by inducing excessive FGFR3 in slc26a2-/- chondrocytes. Consistently, suppressing FGFR3 signaling by blocking either FGFR3 or phosphorylation of the downstream effector favors the recovery of slc26a2-/- cartilage cultures from impaired growth and unbalanced cell proliferation and apoptosis. Moreover, administration of an FGFR inhibitor to pregnant females shows therapeutic effects on pathological features in slc26a2-/- newborns. Finally, we confirm the skeleton-specific lethality and pathology of global SLC26A2 deletion through analyzing the Col2a1-Cre; slc26a2fl/fl mouse line. Our study unveils a previously unrecognized pathogenic mechanism underlying ACG1B and AO2, and supports suppression of FGFR3 signaling as a promising therapeutic approach for SLC26A2-related chondrodysplasias. FUND: This work was supported by National Natural Science Foundation of China (81871743, 81730065 and 81772377).