• Home
  • Search Results
  • Morphological changes in the enteric nervous system of aging and APP23 transgenic mice.

Morphological changes in the enteric nervous system of aging and APP23 transgenic mice.

Brain research (2011-01-19)
Chris Van Ginneken, Karl-Herbert Schäfer, Debby Van Dam, Véronique Huygelen, Peter P De Deyn
ABSTRACT

Gastrointestinal motility disorders often pose a debilitating problem, especially in elderly patients. In addition, they are frequently occurring co-morbidities in dementia. Whereas a failing enteric nervous system has already been shown to be involved in gastrointestinal motility disorders and in Parkinson's disease, a relationship with the neurodegenerative process of Alzheimer's disease was not yet shown. Therefore, we sought to document quantitative changes in the distribution of βIII-tubulin (general neuronal marker), Substance P, neuronal nitric oxide synthase (NOS), glial fibrillary acidic protein (GFAP) and S-100 immunoreactivity in addition to a qualitative assessment of the presence of amyloid in the small and large intestines of 6, 12 and 18-month-old wild type and transgenic Thy-1-APP23 mice. Amyloid deposits were seen in the vasculature, the mucosal and muscle layer of both heterozygous and wild type mice. Amyloidβ₁₋₄₂ could not be detected, pointing to a different amyloid composition than that found in senile plaques in the mice's brains. The finding of an increased density of βIII-tubulin-, Substance P- and NOS-IR-nerve fibres in heterozygous mice could not undoubtedly be related to amyloid deposition or to an activation of glial cells. Therefore, the alterations at the level of the enteric nervous system and the deposition of amyloid seem not primarily involved in the pathogenesis of Alzheimer's disease. At most they are secondary related to the neurodegenerative process. Additionally, our data could not show extensive neuronal or glial cell loss associated with aging, in contrast to other reports. Instead an increase in S100-IR was observed in senescent mice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Substance P Antibody, pain, serum, Chemicon®
Sigma-Aldrich
Anti-β-Amyloid Protein (1-40) antibody produced in rabbit, whole antiserum

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.