• Home
  • Search Results
  • Cyclic AMP-dependent positive feedback signaling pathways in the cortex contributes to visceral pain.

Cyclic AMP-dependent positive feedback signaling pathways in the cortex contributes to visceral pain.

Journal of neurochemistry (2019-10-31)
Shui-Bing Liu, Xin-Shang Wang, Jiao Yue, Le Yang, Xu-Hui Li, Li-Ning Hu, Jing-Shan Lu, Qian Song, Kun Zhang, Qi Yang, Ming-Ming Zhang, Matteo Bernabucci, Ming-Gao Zhao, Min Zhuo

Cortical areas including the anterior cingulate cortex (ACC) play critical roles in different types of chronic pain. Most of previous studies focus on the sensory inputs from somatic areas, and less information about plastic changes in the cortex for visceral pain. In this study, chronic visceral pain animal model was established by injection with zymosan into the colon of adult male C57/BL6 mice. Whole cell patch-clamp recording, behavioral tests, western blot, and Cannulation and ACC microinjection were employed to explore the role of adenylyl cyclase 1 (AC1) in the ACC of C57/BL6 and AC1 knock out mice. Integrative approaches were used to investigate possible changes of neuronal AC1 in the ACC after the injury. We found that AC1, a key enzyme for pain-related cortical plasticity, was significantly increased in the ACC in an animal model of irritable bowel syndrome. Inhibiting AC1 activity by a selective AC1 inhibitor NB001 significantly reduced the up-regulation of AC1 protein in the ACC. Furthermore, we found that AC1 is required for NMDA GluN2B receptor up-regulation and increases of NMDA receptor-mediated currents. These results suggest that AC1 may form a positive regulation in the cortex during chronic visceral pain. Our findings demonstrate that the up-regulation of AC1 protein in the cortex may underlie the pathology of chronic visceral pain; and inhibiting AC1 activity may be beneficial for the treatment of visceral pain.

Product Number
Product Description

Phosphatase Inhibitor Cocktail 2, aqueous solution (dark coloration may develop upon storage, which does not affect the activity)
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, ascites fluid
Zymosan A from Saccharomyces cerevisiae, for inducing inflamatory response
N-Methyl-D-aspartic acid, ≥98% (TLC), solid
Monoclonal Anti-Synaptophysin antibody produced in mouse, clone SVP-38, ascites fluid
CNQX, ≥98% (HPLC), solid
Anti-SNAP-25 antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Anti-NR1 Antibody, CT, Upstate®, from mouse
NB001, ≥98% (HPLC)