• Home
  • Search Results
  • Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers.

Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers.

Pharmaceutical research (2013-02-07)
Renee R Hood, Chenren Shao, Donna M Omiatek, Wyatt N Vreeland, Don L DeVoe
ABSTRACT

A microfluidic hydrodynamic flow focusing technique enabling the formation of small and nearly monodisperse liposomes is investigated for continuous-flow synthesis of poly(ethylene glycol) (PEG)-modified and PEG-folate-functionalized liposomes for targeted drug delivery. Controlled laminar flow in thermoplastic microfluidic devices facilitated liposome self-assembly from initial lipid compositions including lipid/cholesterol mixtures containing PEG-lipid and folate-PEG-lipid conjugates. Relationships among flow conditions, lipid composition, and liposome size were evaluated; their impact on PEG and folate incorporation were determined through a combination of UV-vis absorbance measurements and characterization of liposome zeta potential. PEG and folate were successfully incorporated into microfluidic-synthesized liposomes over the full range of liposome sizes studied. Efficiency of PEG-lipid incorporation was inversely correlated with liposome diameter. Folate-lipid was effectively integrated into liposomes at various flow conditions. Liposomes incorporating relatively large PEG-modified and folate-PEG-modified lipids were successfully synthesized using the microfluidic flow focusing platform, providing a simple, low cost, rapid method for preparing functionalized liposomes. Relationships between preparation conditions and PEG or folate-PEG functionalization have been elucidated, providing insight into the process and defining paths for optimization of the microfluidic method toward the formation of functionalized liposomes for pharmaceutical applications.