• Home
  • Search Results
  • Experimental observation of nanophase segregation in aqueous salt solutions around the predicted liquid-liquid transition in water.

Experimental observation of nanophase segregation in aqueous salt solutions around the predicted liquid-liquid transition in water.

Physical chemistry chemical physics : PCCP (2020-04-22)
Paul D Lane, Judith Reichenbach, Andrew J Farrell, Lennart A I Ramakers, Katrin Adamczyk, Neil T Hunt, Klaas Wynne
ABSTRACT

The liquid-liquid transition in supercooled liquid water, predicted to occur around 220 K, is controversial due to the difficulty of studying it caused by competition from ice crystallization (the so-called "no man's land"). In aqueous solutions, it has been predicted to give rise to phase separation on a nanometer scale between a solute-rich high-density phase and a water-rich low-density phase. Here we report direct experimental evidence for the formation of a nanosegregated phase in eutectic aqueous solutions of LiCl and LiSCN where the presence of crystalline water can be experimentally excluded. Femtosecond infrared and Raman spectroscopies are used to determine the temperature-dependent structuring of water, the solvation of the SCN- anion, and the size of the phase segregated domains.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lithium thiocyanate hydrate

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.