• Home
  • Search Results
  • Obese adipose tissue extracellular vesicles raise breast cancer cell malignancy.

Obese adipose tissue extracellular vesicles raise breast cancer cell malignancy.

Endocrine-related cancer (2020-08-02)
Isadora Ramos-Andrade, João Moraes, Renata Machado Brandão-Costa, Simone Vargas da Silva, Antônio de Souza, César da Silva, Mariana Renovato-Martins, Christina Barja-Fidalgo
ABSTRACT

Obesity is a chronic low-grade inflammatory condition that strongly impacts breast cancer. Aside from inflammatory mediators, obese adipose tissue (AT) secretes high amounts of extracellular vesicles (EVs), which are capable of transferring molecules to target cells and promoting cell-to-cell communication. Here, we investigated how soluble mediators and EVs secreted by human obese AT influence MCF-7 and MDA-MB-231 mammary adenocarcinoma cell lines by modulating cell proliferation, migration, invasion, and signaling pathways. Both cell lineages were stimulated with conditioned media (CM) or EVs obtained from cultures of AT explants collected from lean or obese individuals who underwent plastic or bariatric surgeries, respectively. EVs derived from obese AT increased the proliferative potential of both cell lines and further potentiated the migratory and invasive properties of MDA-MB-231 cells. The proliferative effects of CM and EVs on MCF-7 cells were dependent on ERK/MAPK pathway activation, while the migration and invasiveness of MDA-MB-231 cells were dependent on PI3K/AKT pathway activation. Furthermore, CM derived from obese AT potentiated the pro-angiogenic effect of MDA-MB-231 on endothelial cells. We also detected that EVs derived from obese AT were enriched in leptin and bioactive matrix metallopeptidase 9 (MMP9), and stimulation of MDA-MD-231 cells with those EVs or CM derived from obese AT potentiated the release of MMP9 by those cells. Our data indicate that obese AT secretes molecules and EVs with pro-tumoral activities capable of increasing breast cancer cell malignancy and provide strong evidence of the key role of AT-derived EV signaling in the tumor microenvironment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)