Skip to Content
MilliporeSigma
  • Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis.

Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis.

Cells (2021-02-13)
Han-Yu Wang, Chun-Hsiang Lin, Yi-Ru Shen, Ting-Yu Chen, Chia-Yih Wang, Pao-Lin Kuo
ABSTRACT

Septins are GTP-binding proteins that form heteromeric filaments for proper cell growth and migration. Among the septins, septin7 (SEPT7) is an important component of all septin filaments. Here we show that protein kinase A (PKA) phosphorylates SEPT7 at Thr197, thus disrupting septin filament dynamics and ciliogenesis. The Thr197 residue of SEPT7, a PKA phosphorylating site, was conserved among different species. Treatment with cAMP or overexpression of PKA catalytic subunit (PKACA2) induced SEPT7 phosphorylation, followed by disruption of septin filament formation. Constitutive phosphorylation of SEPT7 at Thr197 reduced SEPT7‒SEPT7 interaction, but did not affect SEPT7‒SEPT6‒SEPT2 or SEPT4 interaction. Moreover, we noted that SEPT7 interacted with PKACA2 via its GTP-binding domain. Furthermore, PKA-mediated SEPT7 phosphorylation disrupted primary cilia formation. Thus, our data uncover the novel biological function of SEPT7 phosphorylation in septin filament polymerization and primary cilia formation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-SEPT7 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution, ab2
Sigma-Aldrich
Anti-ARTS antibody, Mouse monoclonal, clone ARTS51, purified from hybridoma cell culture
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)