• Home
  • Search Results
  • Molecular Organization of Integrin-Based Adhesion Complexes in Mouse Embryonic Stem Cells.

Molecular Organization of Integrin-Based Adhesion Complexes in Mouse Embryonic Stem Cells.

ACS biomaterials science & engineering (2019-08-12)
Shumin Xia, Evelyn K F Yim, Pakorn Kanchanawong
ABSTRACT

The mechanical microenvironment serves as an important factor influencing stem cell differentiation. Mechanobiological responses depend strongly on actomyosin contractility and integrin-based cell-extracellular matrix (ECM) interactions mediated by adhesive structures such as focal adhesions (FAs). While the roles of FAs in mechanobiology have been intensively studied in many mesenchymal and migratory cell types, recently it has been recognized that certain pluripotent stem cells (PSCs) exhibited significantly attenuated FA-mediated mechanobiological responses. FAs in such PSCs are sparsely distributed and much less prominent in comparison to "classical" FAs of typical adherent cells. Despite these differences, insights into how FAs in PSCs are structurally organized to perform their functions are still elusive. Using mouse embryonic stem cells (mESCs) to study PSC-ECM interactions, here we surveyed the molecular composition and nanostructural organization of FAs. We found that, despite being small in size, mESC FAs appeared to be compositionally mature, containing markers such as vinculin, zyxin, and α-actinin, and dependent on myosin II contractility. Using super-resolution microscopy, we revealed that mESC FAs were organized into a conserved multilayer nanoscale architecture. However, the nanodomain organization was compressed in mESCs, with the force transduction layer spanning ∼10 nm, significantly more compact than in FAs of other cell types. Furthermore, we found that the position and orientation of vinculin, a key mechanotransduction protein, were modulated in an ECM-dependent manner. Our analysis also revealed that while most core FA genes were expressed, the expression of LIM domain proteins was comparatively lower in PSCs. Altogether our results suggest that while core structural and mechanosensitive elements are operational in mESC FAs, their structural organization and regulatory aspects may diverge significantly from "classical" FAs, which may account for the attenuated mechanobiological responses of these cell types.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 7, ≥98%
Sigma-Aldrich
Fibronectin bovine plasma, solution, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Y-27632 dihydrochloride, ≥98% (HPLC)
Sigma-Aldrich
Gelatin from porcine skin, powder, gel strength ~300 g Bloom, Type A, BioReagent, suitable for electrophoresis, suitable for cell culture
Sigma-Aldrich
ESGRO® Recombinant Mouse LIF Protein, ESGRO Leukemia Inhibitory Factor (LIF) supplement for mouse ES cell culture. Each vial contains 10^7 units/ml.
Sigma-Aldrich
(−)-Blebbistatin, solid, synthetic
Sigma-Aldrich
Monoclonal Anti-Vinculin antibody produced in mouse, clone VIN-11-5, ascites fluid
Sigma-Aldrich
Monoclonal Anti-Talin antibody produced in mouse, clone 8d4, ascites fluid
Sigma-Aldrich
Anti-Myosin IIA, non muscle antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Monoclonal Anti-α-Actinin antibody produced in mouse, clone BM-75.2, ascites fluid
Sigma-Aldrich
Anti-Phosphotyrosine Antibody, 4G10® Platinum, clone 4G10, Upstate®, from mouse
Sigma-Aldrich
Anti-OCT-4 [POU5F1] Antibody, clone 7F9.2, clone 7F9.2, from mouse