• Rapid generation of potent antibodies by autonomous hypermutation in yeast.

Rapid generation of potent antibodies by autonomous hypermutation in yeast.

Nature chemical biology (2021-06-26)
Alon Wellner, Conor McMahon, Morgan S A Gilman, Jonathan R Clements, Sarah Clark, Kianna M Nguyen, Ming H Ho, Vincent J Hu, Jung-Eun Shin, Jared Feldman, Blake M Hauser, Timothy M Caradonna, Laura M Wingler, Aaron G Schmidt, Debora S Marks, Jonathan Abraham, Andrew C Kruse, Chang C Liu

The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, not always accessible and poorly compatible with many antigens. Here, we describe 'autonomous hypermutation yeast surface display' (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. By encoding antibody fragments on an error-prone orthogonal DNA replication system, surface-displayed antibody repertoires continuously mutate through simple cycles of yeast culturing and enrichment for antigen binding to produce high-affinity clones in as little as two weeks. We applied AHEAD to generate potent nanobodies against the SARS-CoV-2 S glycoprotein, a G-protein-coupled receptor and other targets, offering a template for streamlined antibody generation at large.

Product Number
Product Description

Polybrene Infection / Transfection Reagent, A highly efficient method of gene transfer into mammalian cells leveraging infection with retroviral vectors.
HRV-3C Protease, Biotin tagged, Recombinant protein, 0.8-1.2 mg/mL, aqueous solution
Albumin from human serum, lyophilized powder, Fatty acid free, Globulin free, ≥99% (agarose gel electrophoresis)