Skip to Content
MilliporeSigma
  • E4 ubiquitin ligase promotes mitofusin turnover and mitochondrial stress response.

E4 ubiquitin ligase promotes mitofusin turnover and mitochondrial stress response.

Molecular cell (2023-08-19)
Vincent Anton, Ira Buntenbroich, Tânia Simões, Mariana Joaquim, Leonie Müller, Reinhard Buettner, Margarete Odenthal, Thorsten Hoppe, Mafalda Escobar-Henriques
ABSTRACT

Ubiquitin-dependent control of mitochondrial dynamics is important for protein quality and neuronal integrity. Mitofusins, mitochondrial fusion factors, can integrate cellular stress through their ubiquitylation, which is carried out by multiple E3 enzymes in response to many different stimuli. However, the molecular mechanisms that enable coordinated responses are largely unknown. Here we show that yeast Ufd2, a conserved ubiquitin chain-elongating E4 enzyme, is required for mitochondrial shape adjustments. Under various stresses, Ufd2 translocates to mitochondria and triggers mitofusin ubiquitylation. This elongates ubiquitin chains on mitofusin and promotes its proteasomal degradation, leading to mitochondrial fragmentation. Ufd2 and its human homologue UBE4B also target mitofusin mutants associated with Charcot-Marie-Tooth disease, a hereditary sensory and motor neuropathy characterized by progressive loss of the peripheral nerves. This underscores the pathophysiological importance of E4-mediated ubiquitylation in neurodegeneration. In summary, we identify E4-dependent mitochondrial stress adaptation by linking various metabolic processes to mitochondrial fusion and fission dynamics.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Glutathione-S-Transferase (GST) antibody, Mouse monoclonal, clone GST-2, purified from hybridoma cell culture
Millipore
EZview Red Anti-HA Affinity Gel
Sigma-Aldrich
MG-132, InSolution, ≥98%, 10 mM, reversible proteasome inhibitor