Ionic components of electric current at rat corneal wounds.

PloS one (2011-03-03)
Ana Carolina Vieira, Brian Reid, Lin Cao, Mark J Mannis, Ivan R Schwab, Min Zhao
ABSTRACT

Endogenous electric fields and currents occur naturally at wounds and are a strong signal guiding cell migration into the wound to promote healing. Many cells involved in wound healing respond to small physiological electric fields in vitro. It has long been assumed that wound electric fields are produced by passive ion leakage from damaged tissue. Could these fields be actively maintained and regulated as an active wound response? What are the molecular, ionic and cellular mechanisms underlying the wound electric currents? Using rat cornea wounds as a model, we measured the dynamic timecourses of individual ion fluxes with ion-selective probes. We also examined chloride channel expression before and after wounding. After wounding, Ca(2+) efflux increased steadily whereas K(+) showed an initial large efflux which rapidly decreased. Surprisingly, Na(+) flux at wounds was inward. A most significant observation was a persistent large influx of Cl(-), which had a time course similar to the net wound electric currents we have measured previously. Fixation of the tissues abolished ion fluxes. Pharmacological agents which stimulate ion transport significantly increased flux of Cl(-), Na(+) and K(+). Injury to the cornea caused significant changes in distribution and expression of Cl(-) channel CLC2. These data suggest that the outward electric currents occurring naturally at corneal wounds are carried mainly by a large influx of chloride ions, and in part by effluxes of calcium and potassium ions. Ca(2+) and Cl(-) fluxes appear to be mainly actively regulated, while K(+) flux appears to be largely due to leakage. The dynamic changes of electric currents and specific ion fluxes after wounding suggest that electrical signaling is an active response to injury and offers potential novel approaches to modulate wound healing, for example eye-drops targeting ion transport to aid in the challenging management of non-healing corneal ulcers.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Phosphate buffered saline, tablet
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, fatty acid free, essentially globulin free, pH 7, ≥98%
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 7, ≥98%
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Phosphate buffered saline, powder, pH 7.4, for preparing 1 L solutions
Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 7, ≥98%
Sigma-Aldrich
Paraformaldehyde, powder, 95%
Sigma-Aldrich
Phosphate buffered saline, 10× concentrate, BioPerformance Certified, suitable for cell culture
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, essentially globulin free, pH 7, ≥98%
Sigma-Aldrich
Bovine Serum Albumin, fatty acid free, low endotoxin, lyophilized powder, BioReagent, suitable for cell culture, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Triton X-100, BioXtra
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, pH 7, ≥98%
Sigma-Aldrich
Paraformaldehyde, reagent grade, crystalline
Sigma-Aldrich
Bovine Serum Albumin, cold ethanol fraction, pH 5.2, ≥96%
Sigma-Aldrich
Phosphate Buffered Saline with 0.05% TWEEN® 20, pH 7.4
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, essentially fatty acid free, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Phosphate buffered saline, BioPerformance Certified, pH 7.4
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, suitable for RIA, pH 5.2, ≥96%
Sigma-Aldrich
Phosphate Buffered Saline, 10× PBS for Western blots and IP
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, lyophilized powder, essentially fatty acid free, ≥98% (agarose gel electrophoresis)
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 5.2, ≥96%
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, suitable for (for molecular biology), Non-acetylated
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, crystallized, ≥98.0% (GE)
Sigma-Aldrich
Bovine Serum Albumin, pH <5.0, powder
Sigma-Aldrich
Bovine Serum Albumin, powder, BioXtra
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, suitable for hybridization, pH 7, ≥98%
Sigma-Aldrich
Paraformaldehyde, prilled, 95%