• Home
  • Search Results
  • Skin tumors induced by sorafenib; paradoxic RAS-RAF pathway activation and oncogenic mutations of HRAS, TP53, and TGFBR1.

Skin tumors induced by sorafenib; paradoxic RAS-RAF pathway activation and oncogenic mutations of HRAS, TP53, and TGFBR1.

Clinical cancer research : an official journal of the American Association for Cancer Research (2011-11-19)
Jean Philippe Arnault, Christine Mateus, Bernard Escudier, Gorana Tomasic, Janine Wechsler, Emilie Hollville, Jean-Charles Soria, David Malka, Alain Sarasin, Magalie Larcher, Jocelyne André, Nyam Kamsu-Kom, Lise Boussemart, Ludovic Lacroix, Alain Spatz, Alexander M Eggermont, Sabine Druillennec, Stephan Vagner, Alain Eychène, Nicolas Dumaz, Caroline Robert
ABSTRACT

The emergence of skin tumors in patients treated with sorafenib or with more recent BRAF inhibitors is an intriguing and potentially serious event. We carried out a clinical, pathologic, and molecular study of skin lesions occurring in patients receiving sorafenib. Thirty-one skin lesions from patients receiving sorafenib were characterized clinically and pathologically. DNA extracted from the lesions was screened for mutation hot spots of HRAS, NRAS, KiRAS, TP53, EGFR, BRAF, AKT1, PI3KCA, TGFBR1, and PTEN. Biological effect of sorafenib was studied in vivo in normal skin specimen and in vitro on cultured keratinocytes. We observed a continuous spectrum of lesions: from benign to more inflammatory and proliferative lesions, all seemingly initiated in the hair follicles. Eight oncogenic HRAS, TGFBR1, and TP53 mutations were found in 2 benign lesions, 3 keratoacanthomas (KA) and 3 KA-like squamous cell carcinoma (SCC). Six of them correspond to the typical UV signature. Treatment with sorafenib led to an increased keratinocyte proliferation and a tendency toward increased mitogen-activated protein kinase (MAPK) pathway activation in normal skin. Sorafenib induced BRAF-CRAF dimerization in cultured keratinocytes and activated CRAF with a dose-dependent effect on MAP-kinase pathway activation and on keratinocyte proliferation. Sorafenib induces keratinocyte proliferation in vivo and a time- and dose-dependent activation of the MAP kinase pathway in vitro. It is associated with a spectrum of lesions ranging from benign follicular cystic lesions to KA-like SCC. Additional and potentially preexisting somatic genetic events, like UV-induced mutations, might influence the evolution of benign lesions to more proliferative and malignant tumors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Duolink® In Situ Detection Reagents Red
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Rabbit PLUS, Affinity purified Donkey anti-Rabbit IgG (H+L)
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Mouse MINUS, Affinity purified Donkey anti-Mouse IgG (H+L)
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Mouse PLUS
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Rabbit MINUS
Sigma-Aldrich
Duolink® In Situ Wash Buffers, Fluorescence
Sigma-Aldrich
Duolink® In Situ Detection Reagents Green
Sigma-Aldrich
Duolink® In Situ Detection Reagents Orange
Sigma-Aldrich
Duolink® In Situ Detection Reagents FarRed
Sigma-Aldrich
Duolink® In Situ Mounting Medium with DAPI
Sigma-Aldrich
Duolink® In Situ Probemaker PLUS
Sigma-Aldrich
Duolink® In Situ Probemaker MINUS
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Goat PLUS
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Goat MINUS, Affinity purified Donkey anti-Goat IgG (H+L)
Sigma-Aldrich
Duolink® In Situ Microplate Nuclear Stain, Anti-Fade
Sigma-Aldrich
Duolink® In Situ Microplate Heat Transfer Block

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.