• Home
  • Search Results
  • The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1.

The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1.

The Journal of pharmacology and experimental therapeutics (1999-02-23)
L Zhang, W Gorset, M J Dresser, K M Giacomini
ABSTRACT

Polyspecific organic cation transporters in epithelia play an important role in the elimination of many endogenous bioactive amines and therapeutically important drugs. Recently, the first human organic cation transporter (hOCT1) was cloned from liver. The purpose of the current study was to determine the effect of molecular size and hydrophobicity on the transport of organic cations by hOCT1. We studied the interaction of a series of n-tetraalkylammonium (n-TAA) compounds (alkyl chain length, N, ranging from 1 to 6 carbons) with hOCT1 in a transiently transfected human cell line, HeLa. [14C]tetraethylammonium (TEA) uptake was measured under different experimental conditions. Both cis-inhibition and trans-stimulation studies were carried out. With the exception of tetramethylammonium, all of the n-TAAs significantly inhibited [14C]TEA uptake. A reversed correlation of IC50 values (range, 3.0-260 microM) with alkyl chain lengths or partition coefficients (LogP) was observed. trans-Stimulation studies revealed that TEA, tetrapropylammonium, tetrabutylammonium, as well as tributylmethylammonium trans-stimulated TEA uptake mediated by hOCT1. In contrast, tetramethylammonium and tetrapentylammonium did not trans-stimulate [14C]TEA uptake, and tetrahexylammonium demonstrated an apparent "trans-inhibition" effect. These data indicate that with increasing alkyl chain lengths (N >/= 2), n-TAA compounds are more poorly translocated by hOCT1 although their potency of inhibition increases. Similar findings were obtained with nonaliphatic hydrocarbons. These data suggest that a balance between hydrophobic and hydrophilic properties is necessary for binding and subsequent translocation by hOCT1.

MATERIALS
Product Number
Brand
Product Description

Supelco
Tetrahexylammonium hydrogensulfate, suitable for ion pair chromatography, LiChropur, ≥99.0% (T)
Sigma-Aldrich
Tetrahexylammonium hydrogensulfate, ≥98.0% (T)
Sigma-Aldrich
Tetrahexylammonium bromide, 99%
Sigma-Aldrich
Tetrahexylammonium chloride, 96%
Supelco
Tetrahexylammonium bromide, suitable for ion pair chromatography, LiChropur, ≥99.0% (AT)
Sigma-Aldrich
Tetrahexylammonium hydroxide solution, ~40% in H2O (T)
Sigma-Aldrich
Tetrahexylammonium iodide, ≥99.0% (AT)
Sigma-Aldrich
Tetrahexylammonium hydroxide solution, ~10% in methanol (T)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.