Priming in plant-pathogen interactions.

Trends in plant science (2002-05-07)
Uwe Conrath, Corné M J Pieterse, Brigitte Mauch-Mani

Plants can acquire enhanced resistance to pathogens after treatment with necrotizing attackers, nonpathogenic root-colonizing pseudomonads, salicylic acid, beta-aminobutyric acid and many other natural or synthetic compounds. The induced resistance is often associated with an enhanced capacity to mobilize infection-induced cellular defence responses - a process called 'priming'. Although the phenomenon has been known for years, most progress in our understanding of priming has been made only recently. These studies show that priming often depends on the induced disease resistance key regulator NPR1 (also known as NIM1 or SAI1) and that priming has a major effect on the regulation of cellular plant defence responses.

Product Number
Product Description

2,6-Dichloropyridine-4-carboxylic acid, 98%

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.