• Home
  • Search Results
  • Impurity in buffer substances mimics the effects of ATP on soluble 5'-nucleotidase.

Impurity in buffer substances mimics the effects of ATP on soluble 5'-nucleotidase.

Enzyme (1991-01-01)
M Le Hir

An impurity, probably an anion, present in some batches of the buffer substances 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES), 2-morpholinoethane sulfonic acid (Mes) and piperazine-1,4-bis(2-ethane sulfonic acid (Pipes), activates the soluble 5'-nucleotidase from rat kidney. The affinity of the enzyme for 5'-IMP and the Vmax were both increased by the unidentified activator. ATP and 2,3-diphosphoglycerate, known activators of the soluble 5'-nucleotidase, had no effect if the incubation media were buffered with batches containing high concentrations of the activating impurity. These results suggest that the impurity interacts with the soluble 5'-nucleotidase at the same site as ATP and 2,3-diphosphoglycerate, however with a much higher affinity than these two compounds. It is possible that the same impurity might interfere with other proteins for which ATP is a substrate or a ligand.

Product Number
Product Description

PIPES, ≥99% (titration)
PIPES, BioPerformance Certified, suitable for cell culture
PIPES, BioXtra, for molecular biology, ≥99.5% (T)
PIPES, BioXtra, ≥99% (titration)
PIPES sodium salt, ≥99% (titration)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.