The behavior of clomazone in the soil environment.

Pest management science (2009-03-26)
Amrith S Gunasekara, Imma Donna P dela Cruz, Matthew J Curtis, Victor P Claassen, Ronald S Tjeerdema
ABSTRACT

Clomazone is a herbicide used to control broadleaf weeds and grasses. Clomazone use in agriculturally important crops and forests for weed control has increased and is a potential water contaminant given its high water solubility (1100 microg mL(-1)). Soil sorption is an environmental fate parameter that may limit its movement to water systems. The authors used model rice and forest soils of California to test clomazone sorption affinity, capacity, desorption, interaction with soil organic matter and behavior with black carbon. Sorption of clomazone to the major organic matter fraction of soil, humic acid (HA) (K(d) = 29-87 L kg(-1)), was greater than to whole soils (K(d) = 2.3-11 L kg(-1)). Increased isotherm non-linearity was observed for the whole soils (N = 0.831-0.893) when compared with the humic acids (N = 0.954-0.999). Desorption isotherm results showed hysteresis, which was greatest at the lowest solution concentration of 0.067 microg mL(-1) for all whole soils and HA extracts. Aliphatic carbon content appeared to contribute to increased isotherm linearity. The results indicate that clomazone does not sorb appreciably to sandy or clay soils. Its sorption affinity and capacity is greater in humic acid, and consequently clomazone has difficulty desorbing from soil organic matter. Sorption appears to follow processes explained by the dual-mode model, the presence of fire residues (black carbon) and a recently proposed sorption mechanism.

MATERIALS
Product Number
Brand
Product Description

Supelco
Clomazone, PESTANAL®, analytical standard

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.