MilliporeSigma
  • Home
  • Search Results
  • Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy.

Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy.

Langmuir : the ACS journal of surfaces and colloids (2010-01-16)
G Cheng, V Castelletto, C M Moulton, G E Newby, I W Hamley
ABSTRACT

The self-assembly and hydrogelation properties of two Fmoc-tripeptides [Fmoc = N-(fluorenyl-9-methoxycarbonyl)] are investigated, in borate buffer and other basic solutions. A remarkable difference in self-assembly properties is observed comparing Fmoc-VLK(Boc) with Fmoc-K(Boc)LV, both containing K protected by N(epsilon)-tert-butyloxycarbonate (Boc). In borate buffer, the former peptide forms highly anisotropic fibrils which show local alignment, and the hydrogels show flow-aligning properties. In contrast, Fmoc-K(Boc)LV forms highly branched fibrils that produce isotropic hydrogels with a much higher modulus (G' > 10(4) Pa), and lower concentration for hydrogel formation. The distinct self-assembled structures are ascribed to conformational differences, as revealed by secondary structure probes (CD, FTIR, Raman spectroscopy) and X-ray diffraction. Fmoc-VLK(Boc) forms well-defined beta-sheets with a cross-beta X-ray diffraction pattern, whereas Fmoc-KLV(Boc) forms unoriented assemblies with multiple stacked sheets. Interchange of the K and V residues when inverting the tripeptide sequence thus leads to substantial differences in self-assembled structures, suggesting a promising approach to control hydrogel properties.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Fmoc-Leu-OH, ≥97.0%