• Home
  • Search Results
  • Purification and characterization of a novel NADH-dependent carbonyl reductase from Pichia stipitis involved in biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate.

Purification and characterization of a novel NADH-dependent carbonyl reductase from Pichia stipitis involved in biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate.

Bioresource technology (2010-10-12)
Hou Cao, Lan Mi, Qi Ye, Guanglou Zang, Ming Yan, Yan Wang, Yueyuan Zhang, Ximu Li, Lin Xu, Jian Xiong, Pingkai Ouyang, Hanjie Ying
ABSTRACT

A novel NADH-dependent dehydrogenases/reductases (SDRs) superfamily reductase (PsCRII) was isolated from Pichia stipitis. It produced ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE] in greater than 99% enantiomeric excess. This enzyme was purified to homogeneity by ammonium sulfate precipitation followed by Q-Sepharose chromatography. Compared to similar known reductases producing (S)-CHBE, PsCR II was more suitable for production since the purified PsCRII preferred the inexpensive cofactor NADH to NADPH as the electron donor. Furthermore, the Km of PsCRII for ethyl 4-chloro-3-oxobutanoate (COBE) was 3.3 mM, and the corresponding Vmax was 224 μmol/mg protein/min. The catalytic efficiency is the highest value ever reported for NADH-dependent reductases from yeasts that produce CHBE with high enantioselectivity. In addition, this enzyme exhibited broad substrate specificity for several β-keto esters using NADH as the coenzyme. The properties of PsCRII with those of other carbonyl reductases from yeasts were also compared in this study.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethyl 4-chloroacetoacetate, 95%
Sigma-Aldrich
Ethyl 4-chloroacetoacetate, Arxada quality, ≥97.0% (GC)