• Home
  • Search Results
  • Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1,2-dichlorobenzene.

Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1,2-dichlorobenzene.

Environmental science & technology (2010-12-23)
Shadrack Nganai, Slawomir M Lomnicki, Barry Dellinger

Formation of polychorinated dibenzo-p-dioxins (PCDDs) has been demonstrated to occur via surface-mediated reactions of chlorinated phenols. However, polychlorinated dibenzofurans (PCDFs) are observed in much lower yields in laboratory studies than in full-scale combustors where PCDFs are in higher concentrations than PCDDs. This has led to the suggestion that at least PCDFs are formed from elemental carbon in the de novo process. However, the potential for PCDF formation from reactions of chlorinated benzenes has been largely overlooked. In this study, we investigated the potential contribution of chlorinated benzenes to formation of PCDD/Fs using 1,2-dichlorobenzene as a surrogate for reactions of other chlorinated benzenes and CuO/silica (3 wt % Cu) as a surrogate for fly ash. Results were similar for oxidative and pyrolytic conditions with a slight increase in more chlorinated products under oxidative conditions. Reaction products included chlorobenzene, polychlorinated benzenes, phenol, 2-monochlorophenol (2-MCP), dichlorophenols, and trichlorophenols with yields ranging from 0.01 to 2% for the phenols and from 0.01 to 10% for chlorinated benzenes. 4,6-Dichlorodibenzo furan (4,6-DCDF) and dibenzofuran (DF) were observed in maximum yields of 0.2% and 0.5%, respectively, under pyrolytic conditions and 0.1% and 0.3%, respectively, under oxidative conditions. In previous studies of the pyrolysis of 2-MCP under identical conditions, 4,6-DCDF and dibenzo-p-dioxin (DD) were observed with maximum yields of ∼0.2% and ∼0.1%, respectively, along with trace quantities of 1-monochlorodibenzo-p-dioxin (1-MCDD). Under oxidative conditions, 1-MCDD, DD, and 4,6-DCDF were observed with maximum yields of 0.3%, 0.07% and 0.1%, respectively. When combined with the fact that measured concentrations of chlorinated benzenes are 10-100× that of chlorinated phenols in full-scale combustion systems, the data suggest surface-mediated reactions of chlorinated benzenes can be a significant source of PCDD/F emissions.

Product Number
Product Description

1,2-Dichlorobenzene, anhydrous, 99%
1,2-Dichlorobenzene, ReagentPlus®, 99%
1,2-Dichlorobenzene, suitable for HPLC, 99%
1,2-Dichlorobenzene, PESTANAL®, analytical standard
1,2-Dichlorobenzene solution, certified reference material, 200 μg/mL in methanol
1,2-Dichlorobenzene solution, NMR reference standard, 5% in acetone-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.