• Home
  • Search Results
  • Determination of cobalt, nickel and iron at trace level in natural water samples by in-column chelation-reversed phase high-performance liquid chromatography.

Determination of cobalt, nickel and iron at trace level in natural water samples by in-column chelation-reversed phase high-performance liquid chromatography.

Environmental monitoring and assessment (2011-06-28)
Aysen Hol, Umit Divrikli, Latif Elci
ABSTRACT

This paper reports the utilization of 4-(2-pyridylazo) resorcinol (PAR) as a chelating reagent for in-column derivatization and the determination of trace Co, Fe, and Ni ions by reversed-phase high-performance liquid chromatography with photodiode array detector. A good separation of Co, Fe, and Ni chelates were achieved by using an Inertsil ODS-3 column and a mobile phase, consisted of methanol-THF-water mixture (50:5:45) containing ammonium acetate buffer (pH 5.0) and PAR. After full optimization, good repeatability of retention times (relative standard deviation (RSD) < 0.05%) and peak areas (RSD < 1.7%) was achieved as well as a good linearity (r (2) > 0.9991). The detection limits (S/N = 3), expressed as micrograms per liter, were 0.50 (Co), 9.07 (Fe), and 2.00 (Ni). The applicability and the accuracy of the developed method were estimated by the analysis of spiked water samples and certified reference material BCR 715 wastewater-SRM.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-(2-Pyridylazo)resorcinol, 96%

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.