MilliporeSigma
  • Home
  • Search Results
  • Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand.

Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand.

Journal of AOAC International (2012-07-24)
Saksit Chanthai, Sujitra Prachakoll, Chalerm Ruangviriyachai, Devanand L Luthria
ABSTRACT

This paper deals with the systematic comparison of extraction of major volatile aromatic compounds (VACs) of citronella grass and lemongrass by classical microhydrodistillation (MHD), as well as modern accelerated solvent extraction (ASE). Sixteen VACs were identified by GC/MS. GC-flame ionization detection was used for the quantification of five VACs (citronellal, citronellol, geraniol, citral, and eugenol) to compare the extraction efficiency of the two different methods. Linear range, LOD, and LOQ were calculated for the five VACs. Intraday and interday precisions for the analysis of VACs were determined for each sample. The extraction recovery, as calculated by a spiking experiment with known standards of VACs, by ASE and MHD ranged from 64.9 to 91.2% and 74.3 to 95.2%, respectively. The extraction efficiency of the VACs was compared for three solvents of varying polarities (hexane, dichloromethane, and methanol), seven different temperatures (ranging from 40 to 160 degrees C, with a gradual increment of 20 degrees C), five time periods (from 1 to 10 min), and three cycles (1, 2, and 3 repeated extractions). Optimum extraction yields of VACs were obtained when extractions were carried out for 7 min with dichloromethane and two extraction cycles at 120 degrees C. The results showed that the ASE technique is more efficient than MHD, as it results in improved yields and significant reduction in extraction time with automated extraction capabilities.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(R)-(+)-Citronellal, technical grade
Sigma-Aldrich
(S)-(−)-Citronellal, 96%
Sigma-Aldrich
(±)-Citronellal, natural, ≥85%, FCC, FG
Sigma-Aldrich
(±)-Citronellal, ≥95.0% (GC)
Supelco
(±)-Citronellal, analytical standard