• Home
  • Search Results
  • Nitric oxide-mediated stress imprint in potato as an effect of exposure to a priming agent.

Nitric oxide-mediated stress imprint in potato as an effect of exposure to a priming agent.

Molecular plant-microbe interactions : MPMI (2012-07-28)
Jolanta Floryszak-Wieczorek, Magdalena Arasimowicz-Jelonek, Grzegorz Milczarek, Lukasz Janus, Sylwia Pawlak-Sprada, Dariusz Abramowski, Joanna Deckert, Hanna Billert
ABSTRACT

We investigated how potato exposed to a chemical agent could activate nitric oxide (NO)-dependent events facilitating more potent defense responses to a subsequent pathogen attack. Obtained data revealed that all applied inducers, i.e., β-aminobutyric acid (BABA), γ-aminobutyric acid (GABA), laminarin, or 2,6-dichloroisonicotinic acid (INA), were active stimuli in potentiating NO synthesis in the primed potato. It is assumed, for the mechanism proposed in this paper, that priming involves reversible S-nitrosylated protein (S-nitrosothiols [SNO]) storage as one of the short-term stress imprint components, apart from epigenetic changes sensitized by NO. Based on BABA- and GABA-induced events, it should be stated that a rise in NO generation and coding the NO message in SNO storage at a relatively low threshold together with histone H2B upregulation might create short-term imprint activation, facilitating acquisition of a competence to react faster after challenge inoculation. Laminarin elicited strong NO upregulation with an enhanced SNO pool-altered biochemical imprint in the form of less effective local recall, nevertheless being fully protective in distal responses against P. infestans. In turn, INA showed the most intensified NO generation and abundant formation of SNO, both after the inducer treatment and challenge inoculation abolishing potato resistance against the pathogen. Our results indicate, for the first time, that a precise control of synthesized NO in cooperation with reversible SNO storage and epigenetic modifications might play an important role in integrating and coordinating defense potato responses in the priming phenomenon.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Laminarin from Laminaria digitata, polysaccharide substrate for laminarinase
Sigma-Aldrich
3-Aminobutanoic acid, 97%
Sigma-Aldrich
(S)-3-Aminobutyric acid, 97%
Sigma-Aldrich
2,6-Dichloropyridine-4-carboxylic acid, 98%