• Home
  • Search Results
  • Secondary cell wall polymers of Enterococcus faecalis are critical for resistance to complement activation via mannose-binding lectin.

Secondary cell wall polymers of Enterococcus faecalis are critical for resistance to complement activation via mannose-binding lectin.

The Journal of biological chemistry (2012-08-22)
Stefan Geiss-Liebisch, Suzan H M Rooijakkers, Agnieszka Beczala, Patricia Sanchez-Carballo, Karolina Kruszynska, Christian Repp, Tuerkan Sakinc, Evgeny Vinogradov, Otto Holst, Johannes Huebner, Christian Theilacker
ABSTRACT

The complement system is part of our first line of defense against invading pathogens. The strategies used by Enterococcus faecalis to evade recognition by human complement are incompletely understood. In this study, we identified an insertional mutant of the wall teichoic acid (WTA) synthesis gene tagB in E. faecalis V583 that exhibited an increased susceptibility to complement-mediated killing by neutrophils. Further analysis revealed that increased killing of the mutant was due to a higher rate of phagocytosis by neutrophils, which correlated with higher C3b deposition on the bacterial surface. Our studies indicated that complement activation via the lectin pathway was much stronger on the tagB mutant compared with wild type. In concordance, we found an increased binding of the key lectin pathway components mannose-binding lectin and mannose-binding lectin-associated serine protease-2 (MASP-2) on the mutant. To understand the mechanism of lectin pathway inhibition by E. faecalis, we purified and characterized cell wall carbohydrates of E. faecalis wild type and V583ΔtagB. NMR analysis revealed that the mutant strain lacked two WTAs with a repeating unit of →6)[α-l-Rhap-(1→3)]β-D-GalpNAc-(1→5)-Rbo-1-P and →6) β-D-Glcp-(1→3) [α-D-Glcp-(1→4)]-β-D-GalpNAc-(1→5)-Rbo-1-P→, respectively (Rbo, ribitol). In addition, compositional changes in the enterococcal rhamnopolysaccharide were noticed. Our study indicates that in E. faecalis, modification of peptidoglycan by secondary cell wall polymers is critical to evade recognition by the complement system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Rhamnose, natural sourced, 99%, FG
Pricing and availability is not currently available.

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.