MilliporeSigma
  • Home
  • Search Results
  • Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution.

Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution.

Langmuir : the ACS journal of surfaces and colloids (2013-01-15)
Yao-Yue Yang, Jie Ren, Han-Xuan Zhang, Zhi-You Zhou, Shi-Gang Sun, Wen-Bin Cai
ABSTRACT

The dissociative adsorption and electrooxidation of CH(3)OH at a Pd electrode in alkaline solution are investigated by using in situ infrared spectroscopy with both internal and external reflection modes. The former (ATR-SEIRAS) has a higher sensitivity of detecting surface species, and the latter (IRAS) can easily detect dissolved species trapped in a thin-layer-structured electrolyte. Real-time ATR-SEIRAS measurement indicates that CH(3)OH dissociates to CO(ad) species at a Pd electrode accompanied by a "dip" at open circuit potential, whereas deuterium-replaced CH(3)OH doesn't, suggesting that the breaking of the C-H bond is the rate-limiting step for the dissociative adsorption of CH(3)OH. Potential-dependent ATR-SEIRAS and IRAS measurements indicate that CH(3)OH is electrooxidized to formate and/or (bi)carbonate, the relative concentrations of which depend on the potential applied. Specifically, at potentials negative of ca. -0.15 V (vs Ag/AgCl), formate is the predominant product and (bi)carbonate (or CO(2) in the thin-layer structure of IRAS) is more favorable at potentials from -0.15 to 0.10 V. Further oxidation of the CO(ad) intermediate species arising from CH(3)OH dissociation is involved in forming (bi)carbonate at potentials above -0.15 V. Although the partial transformation from interfacial formate to (bi)carbonate may be justified, no bridge-bonded formate species can be detected over the potential range under investigation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ascarite®, Sodium hydroxide-coated silica, 20-30 mesh
Sigma-Aldrich
Ascarite®, Sodium hydroxide-coated silica, 8-20 mesh
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide solution, purum, ≥32%
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Sodium hydroxide, beads, 20-40 mesh, reagent grade, 97%
Sigma-Aldrich
Sodium hydroxide, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets