MilliporeSigma
  • Home
  • Search Results
  • Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal.

Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal.

Aquatic toxicology (Amsterdam, Netherlands) (2013-01-24)
A J Esbaugh, E M Mager, K V Brix, R Santore, M Grosell
ABSTRACT

The toxicity of many metals is impacted by environmental pH, through both competition and complexation by hydroxide and carbonate ions. To establish safe environmental regulation it is important to properly define the relationship between pH and metal toxicity, a process that involves manipulating the pH of test water in the lab. The current study compares the effects of the three most common pH manipulation methods (carbon dioxide, acid-base addition, and chemical buffers) on acute Pb toxicity of a model fish species, Pimephales promelas. Acidification of test water revealed that the Pb and Pb(2+) LC50 values were impacted by the pH manipulation method, with the following order of effects: HCl<CO2<MOPS. Conversely no differences in toxicity were observed when test pH was alkalinized using MOPS or NaOH. The different impacts of pH manipulation methods on Pb toxicity are likely due to different physiological stresses resulting from the respective methods; the physiological implications of each method are discussed. The results suggest that when studying the impacts of pH on metal toxicity it is important to properly replicate the ambient conditions of interest as artificial buffering using CO2 environments or organic buffers significantly affects the physiology of the test organisms above and beyond what is expected from pH alone. Thus, using CO2 and organic buffers overestimates the impact of acid pH on Pb toxicity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Ascarite®, Sodium hydroxide-coated silica, 20-30 mesh
Sigma-Aldrich
Ascarite®, Sodium hydroxide-coated silica, 8-20 mesh
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
MOPS, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
MOPS, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
MOPS, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Supelco
Hydrogen chloride - 1-butanol solution, ~3 M in 1-butanol, for GC derivatization, LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide solution, purum, ≥32%
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Hydrochloric acid, puriss., 24.5-26.0%
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Hydrogen chloride solution, 2.0 M in diethyl ether