• Home
  • Search Results
  • Role of aspartate 132 at the orifice of a proton pathway in cytochrome c oxidase.

Role of aspartate 132 at the orifice of a proton pathway in cytochrome c oxidase.

Proceedings of the National Academy of Sciences of the United States of America (2013-05-16)
Ann-Louise Johansson, Martin Högbom, Jens Carlsson, Robert B Gennis, Peter Brzezinski
ABSTRACT

Proton transfer across biological membranes underpins central processes in biological systems, such as energy conservation and transport of ions and molecules. In the membrane proteins involved in these processes, proton transfer takes place through specific pathways connecting the two sides of the membrane via control elements within the protein. It is commonly believed that acidic residues are required near the orifice of such proton pathways to facilitate proton uptake. In cytochrome c oxidase, one such pathway starts near a conserved Asp-132 residue. Results from earlier studies have shown that replacement of Asp-132 by, e.g., Asn, slows proton uptake by a factor of ∼5,000. Here, we show that proton uptake at full speed (∼10(4) s(-1)) can be restored in the Asp-132-Asn oxidase upon introduction of a second structural modification further inside the pathway (Asn-139-Thr) without compensating for the loss of the negative charge. This proton-uptake rate was insensitive to Zn(2+) addition, which in the wild-type cytochrome c oxidase slows the reaction, indicating that Asp-132 is required for Zn(2+) binding. Furthermore, in the absence of Asp-132 and with Thr at position 139, at high pH (>9), proton uptake was significantly accelerated. Thus, the data indicate that Asp-132 is not strictly required for maintaining rapid proton uptake. Furthermore, despite the rapid proton uptake in the Asn-139-Thr/Asp-132-Asn mutant cytochrome c oxidase, proton pumping was impaired, which indicates that the segment around these residues is functionally linked to pumping.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Aspartic acid, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Aspartic acid, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
SAFC
L-Aspartic acid
Sigma-Aldrich
L-Aspartic acid, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
DL-Aspartic acid, ≥99% (TLC)
Sigma-Aldrich
L-Aspartic acid potassium salt, ≥98% (HPLC)
Sigma-Aldrich
L-Aspartic acid, BioUltra, ≥99.5% (T)
Supelco
L-Aspartic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Aspartic acid hemimagnesium salt dihydrate, ≥97.0% (KT)
Supelco
L-Aspartic acid, certified reference material, TraceCERT®
Sigma-Aldrich
L-Aspartic acid, ≥98%, FG

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.