• Home
  • Search Results
  • Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001).

Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001).

Physical review letters (2013-05-21)
M Beye, T Anniyev, R Coffee, M Dell'Angela, A Föhlisch, J Gladh, T Katayama, S Kaya, O Krupin, A Møgelhøj, A Nilsson, D Nordlund, J K Nørskov, H Öberg, H Ogasawara, L G M Pettersson, W F Schlotter, J A Sellberg, F Sorgenfrei, J J Turner, M Wolf, W Wurth, H Oström

We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process.

Product Number
Product Description

Ruthenium, powder, 99.99% trace metals basis
Ruthenium, powder, −200 mesh, 99.9% trace metals basis
Ruthenium black
Ruthenium, sponge, −100 mesh, 99.9% trace metals basis

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.