• Home
  • Search Results
  • Effect of cross-linking on the in vitro release kinetics of doxorubicin from gelatin implants.

Effect of cross-linking on the in vitro release kinetics of doxorubicin from gelatin implants.

International journal of pharmaceutics (2001-02-13)
H Fan, A K Dash
ABSTRACT

Doxorubicin is one of the most potent anti-tumor agents used generally in the treatment of bone cancer. Like other cancer chemotharepeutics, it produces undesirable side effects such as cardiotoxicity, which is especially severe when administrated via the conventional intravenous route. In order to minimize the systemic toxicities and to make this drug more suitable for the treatment of bone cancer, an implantable delivery system with cross-linked gelatin as the biodegradable matrix material was developed. This delivery system could possibly improve targeting of the drug as well as sustain the rate of release of the drug to the tumor. Glutaraldehyde was used as a cross-linking agent. Incorporation of glutaraldehyde in the matrix was needed to maintain the mechanical strength of the implant and to sustain the rate of release of the drug from the implant. Besides cross-linking the gelatin matrix, glutaraldehyde was found to cross-link the free amino group of doxorubicin. The effect of cross-linker concentration on the stability of the drug in the implant and on the rate and extent of release were also evaluated. In conclusion, cross-linked gelatin implants were developed for the local delivery of doxorubicin.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glutaraldehyde sodium bisulfite addition compound

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.