• Home
  • Search Results
  • Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.

Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.

Current pharmaceutical biotechnology (2005-10-27)
D C Lamb, B K Müller, C Bräuchle
ABSTRACT

Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are methods that extract information about a sample from the influence of thermodynamic equilibrium fluctuations on the fluorescence intensity. This method allows dynamic information to be obtained from steady state equilibrium measurements and its popularity has dramatically increased in the last 10 years due to the development of high sensitivity detectors and its combination with confocal microscopy. Using time-correlated single-photon counting (TCSPC) detection and pulsed excitation, information over the duration of the excited state can be extracted and incorporated in the analysis. In this short review, we discuss new methodologies that have recently emerged which incorporated fluorescence lifetime information or TCSPC data in the FCS and FCCS analysis. Time-gated FCS discriminates between which photons are to be incorporated in the analysis dependent upon their arrival time after excitation. This allows for accurate FCS measurements in the presence of fluorescent background, determination of sample homogeneity, and the ability to distinguish between static and dynamic heterogeneities. A similar method, time-resolved FCS can be used to resolve the individual correlation functions from multiple fluorophores through the different fluorescence lifetimes. Pulsed interleaved excitation (PIE) encodes the excitation source into the TCSPC data. PIE can be used to perform dual-channel FCCS with a single detector and allows elimination of spectral cross-talk with dual-channel detection. For samples that undergo fluorescence resonance energy transfer (FRET), quantitative FCCS measurements can be performed in spite of the FRET and the static FRET efficiency can be determined.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Atto 532 NHS ester, BioReagent, suitable for fluorescence, ≥80% (coupling to amines)
Sigma-Aldrich
Atto 647, BioReagent, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Atto 647 NHS ester, BioReagent, suitable for fluorescence, ≥80% (coupling to amines)
Sigma-Aldrich
Atto 532, BioReagent, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Atto 647 maleimide, BioReagent, suitable for fluorescence, ≥90% (coupling to thiols)
Sigma-Aldrich
Atto 532 maleimide, BioReagent, suitable for fluorescence, ≥90% (coupling to thiols)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.