• Home
  • Search Results
  • Characterization of new fluorescent labels for ultra-high resolution microscopy.

Characterization of new fluorescent labels for ultra-high resolution microscopy.

Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology (2008-10-30)
Andriy Chmyrov, Jutta Arden-Jacob, Alexander Zilles, Karl-Heinz Drexhage, Jerker Widengren

Photo-induced switching of dyes into dark, long-lived states, such as a triplet state, has recently gained increasing interest, as a means to achieve ultra-high optical resolution. Additionally, these long lived states are often highly environment-sensitive and their photodynamics can thus offer additional independent fluorescence-based information. However, although providing a useful mechanism for photo-induced switching, the triplet state often appears as a precursor state for photobleaching, which potentially can limit its usefulness. In this work, a set of rhodamine and pyronin dyes, modified by substitution of heavy atoms and nitrogen within or close to the central xanthene unit of the dyes, were investigated with respect to their triplet state dynamics and photostabilities, under conditions relevant for ultra-high resolution microscopy. Out of the dyes investigated, in particular the rhodamine and pyronin dyes with a sulfur atom replacing the central oxygen atom in the xanthene unit were found to meet the requirements for ultra-high resolution microscopy, combining a prominent triplet state yield with reasonable photostability.

Product Number
Product Description

Atto 465 NHS ester, BioReagent, suitable for fluorescence, ≥80% (HPCE)
Atto 465 maleimide, BioReagent, suitable for fluorescence, ≥90% (coupling to thiols)
Atto Thio12 Biotin
Atto Thio12 maleimide
Atto Thio12

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.