Testing the individual effective dose hypothesis.

Environmental toxicology and chemistry (2013-12-10)
Hung T Vu, Stephen J Klaine
ABSTRACT

The assumption of the individual effective dose is the basis for the probit method used for analyzing dose or concentration-response data. According to this assumption, each individual has a uniquely innate tolerance expressed as the individual effective dose (IED) or the smallest dose that is sufficient to kill the individual. An alternative to IED, stochasticity suggests that individuals do not have uniquely innate tolerance; deaths result from random processes occurring among similar individuals. Although the probit method has been used extensively in toxicology, the underlying assumption has not been tested rigorously. The goal of the present study was to test which assumption, IED or stochasticity, best explained the response of Daphnia magna exposed to multiple pulses of copper sulfate (CuSO4 ) over 24 d. Daphnia magna were exposed to subsequent age-dependent 24-h median lethal concentrations (LC50s) of copper (Cu). Age-dependent 24-h LC50 values and Cu depuration test were determined prior to the 24-d bioassay. The LC50 values were inversely related to organism age. The Cu depuration of D. magna did not depend on age or Cu concentration, and 5 d was sufficient recovery time. Daphnia magna were exposed to 4 24-h Cu exposures, and surviving organisms after each exposure were transferred to Cu-free culture media for recovery before the next exposure. Stochasticity appropriately explained the survival and reproduction response of D. magna exposed to Cu.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Copper(II) sulfate, anhydrous, powder, ≥99.99% trace metals basis
Sigma-Aldrich
Copper(II) sulfate, ReagentPlus®, ≥99%
Sigma-Aldrich
Copper(II) sulfate solution, 4 % (w/v) (prepared from copper (II) sulfate pentahydrate)
Sigma-Aldrich
Copper(II) sulfate, puriss. p.a., anhydrous, ≥99.0% (RT)
Sigma-Aldrich
Copper(II) sulfate, puriss., meets analytical specification of Ph. Eur., BP, USP, anhydrous, 99-100.5% (based on anhydrous substance)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.