• Home
  • Search Results
  • Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of Zea mays.

Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of Zea mays.

International journal of systematic and evolutionary microbiology (2014-02-22)
Peter Kämpfer, Stefanie P Glaeser, John A McInroy, Hans-Jürgen Busse

A Gram-staining-positive, aerobic, non-endospore forming organism, isolated as a seed endophyte (colonizing the internal healthy tissue of plant seed) of sweet corn (Zea mays), strain CSE-5610T, was studied for its taxonomic allocation. On the basis of 16S rRNA gene sequence comparisons, strain CSE-5610T was grouped into the genus Cohnella, most closely related to Cohnella ginsengisoli GR21-5T (98.1%) and 'Cohnella plantaginis' YN-83 (97.5%). The 16S rRNA gene sequence similarity to other members of the genus Cohnella was <96.6%. DNA-DNA hybridization of strain CSE-5610T with C. ginsengisoli DSM 18997T and 'C. plantaginis' DSM 25424 was 58% (reciprocal 24%) and 30% (reciprocal 27%), respectively. The fatty acid profile from whole cell hydrolysates supported the allocation of the strain to the genus Cohnella; iso- and anteiso-branched fatty acids were found as major compounds. meso-Diaminopimelic acid was identified as the cell-wall diamino acid. The quinone system consisted predominantly of menaquinone MK-7. The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids, a phospholipid and minor amounts of two polar lipids. In the polyamine pattern, spermidine was the major polyamine. The G+C content of the genomic DNA was 60 mol%. In addition, the results of physiological and biochemical tests also allowed phenotypic differentiation of strain CSE-5610T from the two closely related strains. Hence, CSE-5610T represents a novel species of the genus Cohnella, for which we propose the name Cohnella rhizosphaerae sp. nov., with CSE-5610T (=LMG 28080T=CIP 110695T) as the type strain.

Product Number
Product Description

2,6-Diaminopimelic acid, ≥98% (TLC)
2,6-Diaminopimelic acid, ≥97.0% (NT)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.