• Home
  • Search Results
  • Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances.

Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances.

Investigative ophthalmology & visual science (2014-03-29)
Arthur Hammer, Olivier Richoz, Samuel Arba Mosquera, David Tabibian, Florence Hoogewoud, Farhad Hafezi
ABSTRACT

New corneal cross-linking (CXL) devices are capable of using higher UV-A light irradiances than used in original CXL protocols. The Bunsen-Roscoe law states that a photochemical reaction should stay constant if the delivered total energy is kept constant; however, little clinical data are available to support this hypothesis. We investigated the biomechanical properties of four groups (n = 50 each) of porcine corneas. Three groups were exposed to riboflavin 0.1 % and UV-A irradiation of equal total energy (3 mW/cm(2) for 30 minutes, 9 mW/cm(2) for 10 minutes, and 18 mW/cm(2) for 5 minutes). Controls were exposed to riboflavin 0.1% without irradiation. Young's modulus of 5-mm wide corneal strips was used as an indicator of corneal stiffness. We observed a decreased stiffening effect with increasing UV-A intensity. Young's modulus at 10% strain showed significant differences between 3 mW/cm(2) and 9 mW/cm(2) (P = 0.002), 3 mW/cm(2) and 18 mW/cm(2) (P = 0.0002), 3 mW/cm(2) and the control group (P < 0.0001), and 9 mW/cm(2) and the control group (P = 0.015). There was no difference between 18 mW/cm(2) and the control group (P = 0.064) and between 9 mW/cm(2) and 18 mW/cm(2) (P = 0.503). The biomechanical effect of CXL decreased significantly when using high irradiance/short irradiation time settings. Intrastromal oxygen diffusion capacity and increased oxygen consumption associated with higher irradiances may be a limiting factor leading to reduced treatment efficiency. Our results regarding the efficiency of high-irradiance collagen cross-linking (CXL) raise concerns about the clinical efficiency of the new high-irradiance CXL devices already used in clinical practice without proper validation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Collagen, Type I solution from rat tail, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from rat tail, Bornstein and Traub Type I, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
(−)-Riboflavin, from Eremothecium ashbyii, ≥98%
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
(−)-Riboflavin, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥98%
Supelco
Riboflavin (B2), analytical standard
Supelco
Riboflavin, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Collagen from bovine achilles tendon, powder, suitable for substrate for collagenase
Sigma-Aldrich
Collagen from chicken sternal cartilage, Type II (Miller), powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I, solid, BioReagent, suitable for cell culture
Sigma-Aldrich
(−)-Riboflavin, meets USP testing specifications
Sigma-Aldrich
Collagen Type IV from human cell culture, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type I (Sigma Type VIII), powder
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I (Sigma Type III), solid
Sigma-Aldrich
Collagen from bovine nasal septum, Bornstein and Traub Type II, powder
USP
Riboflavin, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Collagen human, Bornstein and Traub Type I, acid soluble, powder, ~95% (SDS-PAGE)
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type III (Sigma Type X), powder
Sigma-Aldrich
Collagen from Engelbreth-Holm-Swarm murine sarcoma basement membrane, Type IV (Miller), lyophilized powder, BioReagent, suitable for cell culture
Riboflavin, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, solution, suitable for cell culture, High Performance
Sigma-Aldrich
Collagen from rat tail, Bornstein and Traub Type I (Sigma Type VII), powder
Sigma-Aldrich
Collagen from bovine tracheal cartilage, Bornstein and Traub Type II, powder
Riboflavin for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type V (Sigma Type IX), powder
Sigma-Aldrich
Collagen from rabbit skin, Bornstein and Traub Type I, powder

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.