MilliporeSigma
  • Home
  • Search Results
  • The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.

The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.

Pharmaceutical development and technology (2013-10-29)
M Keshavarz, B Kaffashi
ABSTRACT

The rheological and drug release behavior of biopolymer nanocomposite gels based on the cellulose derivatives, formulated as the bioadhesive drug delivery platforms, were investigated. The bioadhesive gel is composed of the microcrystalline cellulose, sodium carboxymethyl cellulose and phosphate buffered saline (pH = 7.4 at 20 °C) as the dissolution and release medium. The reinforcing nanofillers such as MMT-clay, fumed porous silica and porous starch were used as additives in the nanogel bioadhesive. The constant steady state viscosities of this nanogels upon incorporation of various nanofillers into the systems is the sign of structural stability. Hence, this system is suitable for use in the controlled drug delivery systems in contact with the biological tissues. Based on the rheological measurements, the shear flow properties (i.e. zero shear viscosity and yield stress) were influenced by the concentration of polymers and nanoparticles. The results indicate that the nonlinear rheological data are fitted properly by the Giesekus model. Furthermore, the results showed that the nonlinear viscoelastic parameters (λ and α) are highly affected by the biogel and nanoparticles concentrations. Finally, the drug release was measured, and the results indicated that the biopolymer-clay nanocomposites have appropriate release pattern as the release is better controlled compared to the other nanogel formulations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cellulose, microcrystalline, powder, 20 μm
Sigma-Aldrich
Cellulose, microcrystalline, powder
Supelco
Cellulose, DS-0, powder, suitable for thin layer chromatography (TLC)
Supelco
Avicel® PH-101, ~50 μm particle size
Sigma-Aldrich
Avicel® PH-101, tested according to Ph. Eur.
Supelco
Cellulose, acid washed, powder, for column chromatography
Supelco
Cellulose, powder, for column chromatography
Supelco
Cellulose, acid washed, from spruce, for column chromatography
Supelco
Cellulose, DFS-0, microcrystalline, suitable for thin layer chromatography (TLC)
Sigma-Aldrich
Cellulose, fibers, (medium)
Sigma-Aldrich
Carboxymethylcellulose sodium salt, Medium viscosity
Sigma-Aldrich
Carboxymethylcellulose sodium salt, High viscosity
Sigma-Aldrich
Carboxymethylcellulose sodium salt, low viscosity
Sigma-Aldrich
Cellulose, colloidal, microcrystalline
Sigma-Aldrich
Carboxymethylcellulose sodium, meets USP testing specifications, Medium viscosity
Sigma-Aldrich
α-Cellulose, BioReagent, suitable for insect cell culture
Sigma-Aldrich
Sigmacell Cellulose, Type 20, 20 μm
Sigma-Aldrich
Sigmacell Cellulose, Type 101, Highly purified, fibers
Sigma-Aldrich
Sigmacell Cellulose, Type 50, 50 μm
Sigma-Aldrich
Sodium carboxymethyl cellulose, average Mw ~90,000
Sigma-Aldrich
Sodium carboxymethyl cellulose, average Mw ~250,000, degree of substitution 0.9
Sigma-Aldrich
Sodium carboxymethyl cellulose, average Mw ~250,000, degree of substitution 0.7
Sigma-Aldrich
Sodium carboxymethyl cellulose, average Mw ~700,000
Sigma-Aldrich
Sodium carboxymethyl cellulose, average Mw ~250,000, degree of substitution 1.2
Sigma-Aldrich
α-Cellulose, powder