• Home
  • Search Results
  • Sublethal toxicity of carbofuran on the African catfish Clarias gariepinus: Hormonal, enzymatic and antioxidant responses.

Sublethal toxicity of carbofuran on the African catfish Clarias gariepinus: Hormonal, enzymatic and antioxidant responses.

Ecotoxicology and environmental safety (2014-05-20)
Ahmed Th A Ibrahim, Ahmed S A Harabawy
ABSTRACT

The present study examined the impacts of carbofuran on endocrinology of the catfish, Clarias gariepinus, for the first time and evaluated cortisol (CRT), triiodothyronine (T3), thyroxin (T4), 17β-estradiol (E2) and testosterone (TST) and the oxidative stress markers including SOD, CAT, GSTs, GSH. The toxic effects on the metabolic enzymes, G6PDH and LDH, in addition to lipid peroxidation (LPO) and DNA damage as biomarkers in Nile catfish, to sublethal exposures of carbofuran (0.16 and 0.49mg/L, for 35 days) were studied. Statistically significant differences between selected parameters between control and carbofuran-treated fish were recorded. Carbofuran caused a significant (p<0.05) increase in CRT and T3 levels; the mean levels of T4, TST, E2 exhibited significant decreases (p<0.05) in carbofuran-treated fish. Toxicity of carbofuran on liver, kidney, gills, gonads and muscles after 35 days of exposure was found. Glycogen levels showed a highly significant decrease in liver and gills (p< 0.001), a significant decrease (p< 0.05) in kidney and muscles, and insignificant changes (p>0.05) in gonads of treated fish. The two metabolic enzymes G6PDH and LDH in all tissues exhibited significant decreases (p<0.05) in treated fish. SOD, CAT, GSH and GST levels showed significant decreases (p<0.05) in all tissues of fish after exposure to carbofuran. LPO levels increased significantly (p<0.05) in all tissues except gonads after 5 weeks of exposure to carbofuran. There was a significant (p<0.05) increase in DNA fragmentation percentage in treated fish. Our results provide a clear evidence on the response of C. gariepinus to sublethal doses of carbofuran and allow us to consider catfish as a good bioindicator to reflect the endocrine disrupting impacts of carbofuran, and reflect the potential of this pesticide to cause disturbance in antioxidant defense system as well as metabolism and induction of lipid peroxidation (LPO) and DNA damage in contaminated ecosystems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Glycogen from oyster, ≥75% dry basis
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Glycogen from bovine liver, ≥85%
Sigma-Aldrich
Glycogen from Mytilus edulis (Blue mussel), for DNA precipitations
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~10,000
Supelco
Carbofuran, PESTANAL®, analytical standard
Sigma-Aldrich
Glycogen from rabbit liver, ≥85% dry basis (enzymatic)
Sigma-Aldrich
Carbofuran, 98%
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~90,000
Sigma-Aldrich
Glycogen from Mytilus edulis (Blue mussel), ≥85%
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~86,000
USP
Hypromellose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~120,000
Sigma-Aldrich
Glycogen from oyster, Type XI