MilliporeSigma
  • Home
  • Search Results
  • Compensatory effects of hOGG1 for hMTH1 in oxidative DNA damage caused by hydrogen peroxide.

Compensatory effects of hOGG1 for hMTH1 in oxidative DNA damage caused by hydrogen peroxide.

Toxicology letters (2014-08-17)
Yuebin Ke, Ziquan Lv, Xifei Yang, Jianqing Zhang, Juan Huang, Shuang Wu, Y Robert Li
ABSTRACT

To investigate the potential compensatory effects of hOGG1 and hMTH1 in the repair of oxidative DNA damage. The hOGG1 and hMTH1 gene knockdown human embryonic pulmonary fibroblast cell lines were established by lentivirus-mediated RNA interference. The messenger RNA (mRNA) levels of hOGG1 and hM1TH1 were analyzed by the real-time polymerase chain reaction, and 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) formation was analyzed in a high-performance liquid chromatography-electrochemical detection system. The hOGG1 and hMTH1 knockdown cells were obtained through blasticidin selection. After transfection of hOGG1 and hMTH1 small interfering RNA, the expression levels of the mRNA of hOGG1 and hMTH1 genes were decreased by 97.2% and 96.2%, respectively. The cells then were exposed to 100 μmol/L of hydrogen peroxide (H2O2) for 12 h to induce oxidative DNA damage. After H2O2 exposure, hMTH1 mRNA levels were increased by 25% in hOGG1 gene knockdown cells, whereas hOGG1 mRNA levels were increased by 52% in hMTH1 gene knockdown cells. Following the treatment with H2O2, the 8-oxo-dG levels in the DNA of hOGG1 gene knockdown cells were 3.1-fold higher than those in untreated HFL cells, and 1.67-fold higher than those in H2O2-treated wild-type cells. The 8-oxo-dG levels in hMTH1 gene knockdown cells were 2.3-fold higher than those in untreated human embryonic pulmonary fibroblast cells, but did not differ significantly from those in H2O2-treated wild-type cells. Our data suggested that hOGG1 could compensate for hMTH1 during oxidative DNA damage caused by H2O2, whereas hMTH1 could not compensate sufficiently for hOGG1 during the process.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Ampicillin, meets USP testing specifications
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
8-Hydroxy-2′-deoxyguanosine, ≥98% (TLC)
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Sigma-Aldrich
Hydrogen Peroxide Solution, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Sigma-Aldrich
Hydrogen peroxide solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Ampicillin, anhydrous, 96.0-102.0% (anhydrous basis)
USP
Ampicillin, United States Pharmacopeia (USP) Reference Standard
Supelco
Ampicillin, analytical standard
Ampicillin, anhydrous, European Pharmacopoeia (EP) Reference Standard