• Home
  • Search Results
  • A comparative study of matrix remodeling in chronic models for COPD; mechanistic insights into the role of TNF-α.

A comparative study of matrix remodeling in chronic models for COPD; mechanistic insights into the role of TNF-α.

American journal of physiology. Lung cellular and molecular physiology (2014-08-12)
Irene M J Eurlings, Mieke A Dentener, Evi M Mercken, Rafael de Cabo, Ken R Bracke, Juanita H J Vernooy, Emiel F M Wouters, Niki L Reynaert
ABSTRACT

Remodeling in chronic obstructive pulmonary disease (COPD) has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recently we showed comparable alterations of the extracellular matrix (ECM) compounds collagen, hyaluoran, and elastin in alveolar and small airway walls of COPD patients. The aim of this study was to characterize and assess similarities in alveolar and small airway wall matrix remodeling in chronic COPD models. From this comparative characterization of matrix remodeling we derived and elaborated underlying mechanisms to the matrix changes reported in COPD. Lung tissue sections of chronic models for COPD, either induced by exposure to cigarette smoke, chronic intratracheal lipopolysaccharide instillation, or local tumor necrosis factor (TNF) expression [surfactant protein C (SPC)-TNFα mice], were stained for elastin, collagen, and hyaluronan. Furthermore TNF-α matrix metalloproteinase (MMP)-2, -9, and -12 mRNA expression was analyzed using qPCR and localized using immunohistochemistry. Both collagen and hyaluronan were increased in alveolar and small airway walls of all three models. Interestingly, elastin contents were differentially affected, with a decrease in both alveolar and airway walls in SPC-TNFα mice. Furthermore TNF-α and MMP-2 and -9 mRNA and protein levels were found to be increased in alveolar walls and around airway walls only in SPC-TNFα mice. We show that only SPC-TNFα mice show changes in elastin remodeling that are comparable to what has been observed in COPD patients. This reveals that the SPC-TNFα model is a suitable model to study processes underlying matrix remodeling and in particular elastin breakdown as seen in COPD. Furthermore we indicate a possible role for MMP-2 and MMP-9 in the breakdown of elastin in airways and alveoli of SPC-TNFα mice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, bacterial glycosaminoglycan polysaccharide
Sigma-Aldrich
Hyaluronic acid sodium salt from rooster comb, avian glycosaminoglycan polysaccharide
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 8,000-15,000
Sigma-Aldrich
Hyaluronic acid sodium salt from bovine vitreous humor
Sigma-Aldrich
Elastin from bovine neck ligament, powder
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 750,000-1,000,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 130,000-150,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,500,000-1,750,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus zooepidemicus, bacterial glycosaminoglycan polysaccharide
Sigma-Aldrich
Elastin, soluble from bovine neck ligament, salt-free, lyophilized powder
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 2,000,000-2,400,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,000,000-1,250,000
Sigma-Aldrich
Elastin from human skin, insoluble powder
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 90,000-110,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 300,000-500,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 15,000-30,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 30,000-50,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,750,000-2,000,000
Sigma-Aldrich
Elastin, soluble from human lung, lyophilized powder
Sigma-Aldrich
Elastin, soluble from human aorta, lyophilized powder
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 150,000-300,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,200
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 70,000-120,000
Sigma-Aldrich
Elastin from mouse lung, powder
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,250,000-1,500,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 500,000-750,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 2,000,000-2,200,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 50,000-70,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 70,000-90,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 120,000-350,000