• Home
  • Search Results
  • Time-dependent degenerative transformations in the lipidome of chalazia.

Time-dependent degenerative transformations in the lipidome of chalazia.

Experimental eye research (2014-08-26)
Jadwiga C Wojtowicz, Igor A Butovich, Anne McMahon, Robert N Hogan, Kamel M Itani, Ronald Mancini, Mike Molai, Emily Linsenbardt
ABSTRACT

The aim of this prospective study was to conduct histopathologic and lipidomic analyses of chalazia, in order to evaluate time-dependent changes in the lesion. Samples of surgically excised chalazia were collected over a period of 12 months from 10 patients (mean age 41 years; range, 23-58) with clinically diagnosed chalazia, who underwent scheduled surgery. The ages of chalazia varied from 2 to 28 weeks. To confirm the clinical diagnoses, the morphology of collected tissue samples was evaluated histologically after hematoxylin and eosin staining. The lipids from individual chalazia were analyzed by high-performance liquid chromatography-mass spectrometry and compared with authentic lipid standards and with the lipids of meibum collected from normal controls. We observed gradual, lesion age-dependent transformation of the lipidome of chalazia from an almost normal meibum-like composition to a very different kind of lipidome. A rapid initial increase in the free cholesterol content was followed by a gradual replacement of extremely long chain meibomian-type lipids with a mixture of shorter-chain cholesteryl esters of the C14-C18 family, triacylglycerols, ceramides, phospholipids and sphingomyelins. In addition, a rapid disappearance of wax esters and cholesteryl esters of (1-O)-acyl-omega-hydroxy fatty acids from the lipidome of aging chalazia was observed. Our results are indicative of dramatic, time-dependent changes in the lesion that may involve cholesterol as a trigger and/or a marker of subsequent degeneration of the meibomian lipidome. We hypothesize that early inhibition of these transformations may be useful in reversing the course of the disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Hexane, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG