Breath metabolite response to major upper gastrointestinal surgery.

The Journal of surgical research (2014-10-06)
Piers R Boshier, Vikash Mistry, Julia R Cushnir, Onn Min Kon, Sarah L Elkin, Sally Curtis, Nandor Marczin, George B Hanna
ABSTRACT

Esophagectomy and gastrectomy are associated with profound metabolic changes and significant postoperative morbidity. The aim of this prospective clinical study was to determine whether breath analysis can offer novel insight into the surgical metabolic response and identify biomarkers of postoperative complications, including lung injury. Breath samples were collected preoperatively and at 24, 48, 72, 96 and 168 h after esophagectomy (n = 25) and gastrectomy (n = 15). Targeted analysis of four prominent breath metabolites was performed by selected ion flow-tube mass spectrometry. Patients with nonsurgical lung injury (community-acquired pneumonia) were recruited as positive controls. Perioperative starvation and subsequent reintroduction of nutritional input were associated with significant changes in breath acetone levels. Breath acetone levels fell after esophagectomy (P = 0.008) and were significantly lower than in gastrectomy patients at postoperative time points 48 (P < 0.001) and 72 h (P < 0.001). In contrast, concentrations of isoprene increased significantly after esophagectomy (P = 0.014). Pneumonia was the most frequently observed postoperative complication (esophagectomy 36% and gastrectomy 7%). The concentration of hydrogen cyanide was significantly lower in the breath of patients who developed pneumonia, 72 h after surgery (P = 0.008). Exhaled hydrogen cyanide (P = 0.001) and isoprene (P = 0.014) were also reduced in patients with community-acquired pneumonia compared with healthy controls. Selected ion flow-tube mass spectrometry can be used as a totally noninvasive resource to monitor multiple aspects of metabolic alterations in the postoperative period. Exhaled concentrations of several prominent metabolites are significantly altered after major upper gastrointestinal surgery and in response to pneumonia.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%
Supelco
Acetone, analytical standard
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Isoprene, 99%, contains <1000 ppm p-tert-butylcatechol as inhibitor
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetone, natural, ≥97%
Supelco
Acetone solution, certified reference material, 2000 μg/mL in methanol: water (9:1)
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Supelco
Isoprene, analytical standard
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Millipore
Bifido Selective Supplement B, suitable for microbiology