• Home
  • Search Results
  • Relationship between ecophysiological factors, growth and ochratoxin A contamination of dry-cured sausage based matrices.

Relationship between ecophysiological factors, growth and ochratoxin A contamination of dry-cured sausage based matrices.

International journal of food microbiology (2014-12-02)
Alicia Rodríguez, Daniela Capela, Ángel Medina, Juan J Córdoba, Naresh Magan
ABSTRACT

Dry-cured sausages are colonised by moulds during the ripening process. The temperature and the salt content (which affects water activity, aw) predispose the surface to colonisation by Penicillium species, including Penicillium nordicum and Penicillium verrucosum which can lead to contamination of the sausages with ochratoxin A (OTA). The objective of this work was to obtain scientific data on the impact that interaction between ionic water stress (aw; 0.97, 0.94, 0.90, 0.87 and 0.84) and temperature (30, 25, 20, 15 and 10°C) may have on lag phases prior to growth, growth and OTA production by some P. verrucosum and P. nordicum strains isolated from dry-cured meat products on a dry-cured sausage-based medium over a period of 12days. Although P. nordicum had shorter lag phases than P. verrucosum, the latter grew faster than P. nordicum in most conditions tested. For both species, there was no growth and OTA production at 0.84 aw at all the temperatures tested. The fungi were more tolerant at moderate ionic aw conditions (0.94 and 0.90) and 20 and 25°C. In contrast, the patterns of production of OTA were very different from those for growth. Different OTA production profiles between the two OTA-producing species were found. While P. nordicum began producing OTA in most of the conditions tested by day 6, P. verrucosum only produced the toxin in these conditions when the temperature and aw were >10°C and >0.90, respectively. However, the P. verrucosum strain produced much higher concentrations of OTA than the P. nordicum strain in all conditions. We developed contour maps of the optimum and marginal aw×temperature conditions for growth/OTA production on dry-cured sausage-based medium for the first time. This suggests that these interacting conditions during the early phases of production must be effectively controlled as these favour growth of the toxigenic Penicillia. Knowledge on the ecophysiology of these two important Penicillium species on these matrices could help to make appropriate technological modifications during the sausage ripening process. Thus, our findings may help in informed decision-making in relation to temperature and salt additions at the beginning of processing/curing. Such changes may favour colonisation of starter cultures over OTA producing Penicillia and minimise OTA contamination risks in dry-cured sausages. This may be then effectively incorporated into the hygienic production system in the framework of HACCP.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Water, suitable for HPLC
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Water, HPLC Plus
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Supelco
Water, suitable for ion chromatography
Sigma-Aldrich
Water, deionized
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Supelco
Water, for TOC analysis
Supelco
Water, ACS reagent, for ultratrace analysis
Supelco
Ochratoxin A solution, 10 μg/mL in acetonitrile, analytical standard
Sigma-Aldrich
Ochratoxin A, from Petromyces albertensis, ≥98% (HPLC)
Sigma-Aldrich
Water, BioPerformance Certified
Supelco
Sodium chloride, certified reference material for titrimetry, certified by BAM, ≥99.5%
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
E-Toxate Water, endotoxin, free