Phenotypic modulation of human articular chondrocytes by bistratene A.

European cells & materials (2003-10-17)
B J Gargiulo, P Cragg, J B Richardson, B A Ashton, W E Johnson

Chondrocytes undergo phenotypic alterations following extended periods in monolayer culture, i.e., they become bipolar and flattened, proliferate, and synthesise type I as opposed to type II collagen. This process has been termed chondrocyte dedifferentiation. Bistratene A is a macrolide polyether that specifically activates the delta isoform of protein kinase C (PKCdelta) in some cell types. Here, we show that dedifferentiated human articular chondrocytes became rounded and underwent cell growth arrest after treatment with bistratene A. In addition, bistratene A-treated chondrocytes became more immunopositive for type II collagen, but less immunopositive for type I collagen. These phenotypic changes were associated with a prior and extensive disruption of actin microfilaments and translocation of PKCdelta to the nuclear membrane. Concurrent treatments of chondrocytes with a specific inhibitor of PKCdelta, rottlerin, partially blocked the morphological effects of bistratene A.

Product Number
Product Description

Deoxyribonuclease I from bovine pancreas, Standardized vial containing 2,000 Kunitz units of DNase I (D4527), vial of ≥0.25 mg total protein