• Home
  • Search Results
  • Diethyl pyrocarbonate modification of the ryanodine receptor/Ca2+ channel from skeletal muscle.

Diethyl pyrocarbonate modification of the ryanodine receptor/Ca2+ channel from skeletal muscle.

The Biochemical journal (1994-04-01)
V Shoshan-Barmatz, S Weil
ABSTRACT

Exposure of junctional sarcoplasmic reticulum (SR) membranes or purified ryanodine receptor to the histidine-specific reagent diethyl pyrocarbonate (DEPC) led to concentration- and time-dependent inactivation of ryanodine binding. The pH-dependence of the inactivation of ryanodine binding by DEPC and the reversal of this inactivation by hydroxylamine suggests the modification of histidine residue(s) by the reagent. Kinetic analysis of the time course of inactivation of ryanodine binding by DEPC suggests that the inactivation resulted from modification of a single class of histidine residue per ryanodine-binding site. The degree of inactivation of ryanodine binding by DEPC was decreased when high NaCl concentrations were present in the modification medium. The binding affinities for ryanodine and Ca2+ were not altered by DEPC modification. This modification decreased the total ryanodine-binding sites. DEPC modification increased the Ca(2+)-permeability of the SR vesicles. A variety of bivalent cations prevented the DEPC inactivation of ryanodine binding in a series of decreasing efficiency: Mn2+ > Ba2+ > Mg2+ > Ca2+, similar to their effectiveness in inhibiting ryanodine binding. It is suggested that a histidine residue(s) in the ryanodine receptor is involved, either in the binding of Ca2+, or in a conformational change that may be required for Ca2+ binding to its binding site(s). This modification of the ryanodine receptor resulted in inactivation of ryanodine binding and activation of Ca2+ release.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Diethyl pyrocarbonate, ≥97% (NMR)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.