• Home
  • Search Results
  • Dissolution testing of powders for inhalation: influence of particle deposition and modeling of dissolution profiles.

Dissolution testing of powders for inhalation: influence of particle deposition and modeling of dissolution profiles.

Pharmaceutical research (2014-05-24)
Sabine May, Birte Jensen, Claudius Weiler, Markus Wolkenhauer, Marc Schneider, Claus-Michael Lehr
ABSTRACT

The aim of this study was to investigate influencing factors on the dissolution test for powders for pulmonary delivery with USP apparatus 2 (paddle apparatus). We investigated the influence of dose collection method, membrane holder type and the presence of surfactants on the dissolution process. Furthermore, we modeled the in vitro dissolution process to identify influencing factors on the dissolution process of inhaled formulations based on the Nernst-Brunner equation. A homogenous distribution of the powder was required to eliminate mass dependent dissolution profiles. This was also found by modeling the dissolution process under ideal conditions. Additionally, it could be shown that influence on the diffusion pathway depends on the solubility of the substance. We demonstrated that the use of 0.02% DPPC in the dissolution media results in the most discriminating and reproducible dissolution profiles. In the model section we demonstrated that the dissolution process depends strongly on saturation solubility and particle size. Under defined assumptions we were able show that the model is predicting the experimental dissolution profiles.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Potassium phosphate monobasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Potassium phosphate monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Potassium phosphate monobasic, ReagentPlus®
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Potassium phosphate monobasic, for molecular biology, ≥98.0%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Potassium phosphate monobasic, meets analytical specification of Ph. Eur., NF, E340, anhydrous, 98-100.5% (calc. to the dried substance)
Sigma-Aldrich
Potassium phosphate monobasic, buffer substance, anhydrous, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 99.5-100.5%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Supelco
Monobasic Potassium Phosphate, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90%
Sigma-Aldrich
Potassium phosphate monobasic, BioUltra, for molecular biology, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material