• Home
  • Search Results
  • Combination of direct infusion mass spectrometry and gas chromatography mass spectrometry for toxicometabolomic study of red blood cells and serum of mice Mus musculus after mercury exposure.

Combination of direct infusion mass spectrometry and gas chromatography mass spectrometry for toxicometabolomic study of red blood cells and serum of mice Mus musculus after mercury exposure.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2015-02-11)
M A García-Sevillano, T García-Barrera, F Navarro, N Abril, C Pueyo, J López-Barea, J L Gómez-Ariza
ABSTRACT

Although mercury (Hg) is an important environmental and occupational pollutant, its toxicological effects, especially in serum and red blood cells (RBCs), have been scarcely studied. A toxicometabolomics workflow based on high resolution mass spectrometry approaches has been applied to investigate the toxicological effects of Hg in Mus musculus mice after subcutaneous injection for 10 days, which produced inflammation and vacuolization, steatosis and karyolysis in the hepatic tissue. To this end, direct infusion mass spectrometry (DIMS) of polar and lipophilic extracts from serum and RBCs, using positive and negative mode of acquisition (ESI+/ESI-), and gas chromatography-mass spectrometry were used. A quantitative analysis of reversible oxidized thiols in serum proteins demonstrated a strong oxidative stress induction in the liver of Hg-exposed mice. Endogenous metabolites alterations were identified by partial least squares-discriminant analysis (PLS-DA). Mercury-exposed mice show perturbations in energy metabolism, amino acid metabolism, membrane phospholipid breakdown and oxidative stress-related metabolites in serum along the exposure. This work reports for the first time the effects of Hg-exposure on RBCs metabolic pathways, and reveals disturbances in glycolysis, membrane turnover, glutathione and ascorbate metabolisms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethanol, anhydrous, denatured
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Supelco
Methanol, analytical standard
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Nitric acid, ACS reagent, 70%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Acetic anhydride, ReagentPlus®, ≥99%