• Home
  • Search Results
  • Benzoate metabolism intermediate benzoyl coenzyme A affects gentisate pathway regulation in Comamonas testosteroni.

Benzoate metabolism intermediate benzoyl coenzyme A affects gentisate pathway regulation in Comamonas testosteroni.

Applied and environmental microbiology (2014-04-29)
Dong-Wei Chen, Yun Zhang, Cheng-Ying Jiang, Shuang-Jiang Liu
ABSTRACT

A previous study showed that benzoate was catabolized via a coenzyme A (CoA)-dependent epoxide pathway in Azoarcus evansii (R. Niemetz, U. Altenschmidt, S. Brucker, and G. Fuchs, Eur. J. Biochem. 227:161-168, 1995), but gentisate 1,2-dioxygenase was induced. Similarly, we found that the Comamonas testosteroni strain CNB-1 degraded benzoate via a CoA-dependent epoxide pathway and that gentisate 1,2-dioxygenase (GenA) was also induced when benzoate or 3-hydroxybenzoate served as a carbon source for growth. Genes encoding the CoA-dependent epoxide (box genes) and gentisate (gen genes) pathways were identified. Genetic disruption revealed that the gen genes were not involved in benzoate and 3-hydroxybenzoate degradation. Hence, we investigated gen gene regulation in the CNB-1 strain. The PgenA promoter, a MarR-type regulator (GenR), and the GenR binding site were identified. We found that GenR took gentisate, 3-hydroxybenzoate, and benzoyl-CoA as effectors and that binding of GenR to its target DNA sequence was prohibited when these effectors were present. In vivo studies showed that the CNB-1 mutant that lost benzoyl-CoA synthesis was not able to activate PgenA promoter, while transcription of genA was upregulated in another CNB-1 mutant that lost the ability to degrade benzoyl-CoA. The finding that benzoyl-CoA (a metabolic intermediate of benzoate degradation) and 3-hydroxybenzoate function as GenR effectors explains why GenA was induced when CNB-1 grew on benzoate or 3-hydroxybenzoate. Regulation of gentisate pathways by MarR-, LysR-, and IclR-type regulators in diverse bacterial groups is discussed in detail.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Isoamyl alcohol, ≥98%, FG
Sigma-Aldrich
3-Methyl-1-butanol, anhydrous, ≥99%
Sigma-Aldrich
3-Methyl-1-butanol, reagent grade, 98%
Sigma-Aldrich
Isoamyl alcohol, natural, ≥98%, FG
Sigma-Aldrich
3-Methylbutanol, BioReagent, for molecular biology, ≥98.5%
Sigma-Aldrich
3-Methylbutanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
3-Methyl-1-butanol, ACS reagent, ≥98.5%
Sigma-Aldrich
3-Methylbutanol, puriss. p.a., ACS reagent, ≥98.5% (GC)
Supelco
3-Methyl-1-butanol, analytical standard
Supelco
3-Methylbutanol, analytical standard
Sigma-Aldrich
Benzoyl coenzyme A lithium salt, ≥90%