MilliporeSigma
  • Home
  • Search Results
  • The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices.

The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices.

Analytical and bioanalytical chemistry (2015-03-31)
Zhaoxia Miao, Mengxia Jin, Xia Liu, Wei Guo, Xiangju Jin, Hongyue Liu, Yinghong Wang
ABSTRACT

Nuclear magnetic resonance (NMR)-based metabolomics can be used directly to identify a variety of metabolites in biological fluids and tissues. Metabolite analysis is an important part of life science and metabolomics research. However, the identification of some metabolites using NMR spectroscopy remains a big challenge owing to low abundance or signal overlap. It is important to develop a method to measure these compounds accurately. Two-dimensional NMR spectroscopy, metabolite prediction software packages, and spike-in experiments with authentic standards are often used to solve these problems, but they are costly and time-consuming. In this study, methods were developed to identify metabolites in complex biological mixtures using both high-performance liquid chromatography (HPLC) and off-line microprobe NMR spectroscopy. With use of these methods, 83 and 73 metabolites were identified in Sprague Dawley rat urine and feces, respectively. Among them, 40 and 45 metabolites, respectively, could not be identified with traditional NMR methods. Our research revealed that the combination of HPLC and NMR techniques could significantly improve the accuracy of trace and overlapped metabolite identification, while offering an effective and convenient approach to identify potential biomarkers in complex biological systems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Deuterium oxide, "100%", 99.990 atom % D
Sigma-Aldrich
Deuterium oxide, 99 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, standard, 99.98 atom %±0.01 atom % D
Sigma-Aldrich
Deuterium oxide, extra, 99.994 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, glass distilled
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, "100%", ≥99.96 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D
Sigma-Aldrich
Deuterium oxide, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, 60 atom % D
Sigma-Aldrich
Deuterium oxide, 70 atom % D
Sigma-Aldrich
Deuterium oxide, filtered, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)