• Home
  • Search Results
  • Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats.

Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats.

Molecular and cellular neurosciences (2014-06-11)
Tatyana Kanyshkova, Petra Ehling, Manuela Cerina, Patrick Meuth, Mehrnoush Zobeiri, Sven G Meuth, Hans-Christian Pape, Thomas Budde
ABSTRACT

The polygenic origin of generalized absence epilepsy results in dysfunction of ion channels that allows the switch from physiological asynchronous to pathophysiological highly synchronous network activity. Evidence from rat and mouse models of absence epilepsy indicates that altered Ca(2+) channel activity contributes to cellular and network alterations that lead to seizure activity. Under physiological circumstances, high voltage-activated (HVA) Ca(2+) channels are important in determining the thalamic firing profile. Here, we investigated a possible contribution of HVA channels to the epileptic phenotype using a rodent genetic model of absence epilepsy. In this study, HVA Ca(2+) currents were recorded from neurons of three different thalamic nuclei that are involved in both sensory signal transmission and rhythmic-synchronized activity during epileptic spike-and-wave discharges (SWD), namely the dorsal part of the lateral geniculate nucleus (dLGN), the ventrobasal thalamic complex (VB) and the reticular thalamic nucleus (NRT) of epileptic Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) and non-epileptic August Copenhagen Irish (ACI) rats. HVA Ca(2+) current densities in dLGN neurons were significantly increased in epileptic rats compared with non-epileptic controls while other thalamic regions revealed no differences between the strains. Application of specific channel blockers revealed that the increased current was carried by L-type Ca(2+) channels. Electrophysiological evidence of increased L-type current correlated with up-regulated mRNA and protein expression of a particular L-type channel, namely Cav1.3, in dLGN of epileptic rats. No significant changes were found for other HVA Ca(2+) channels. Moreover, pharmacological inactivation of L-type Ca(2+) channels results in altered firing profiles of thalamocortical relay (TC) neurons from non-epileptic rather than from epileptic rats. While HVA Ca(2+) channels influence tonic and burst firing in ACI and WAG/Rij differently, it is discussed that increased Cav1.3 expression may indirectly contribute to increased robustness of burst firing and thereby the epileptic phenotype of absence epilepsy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Nifedipine, ≥98% (HPLC), powder
Sigma-Aldrich
Monoclonal Anti-MAP2 antibody produced in mouse, ascites fluid, clone HM-2
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Anti-MAP2 antibody, Mouse Monoclonal, clone HM-2, purified from hybridoma cell culture
Sigma-Aldrich
Monoclonal Anti-MAP2 (2a+2b) antibody produced in mouse, clone AP-20, ascites fluid
Supelco
Nifedipine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Anti-MAP2 antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Monoclonal Anti-MAP2 (2a+2b) antibody produced in mouse, ~2 mg/mL, clone AP-20, purified from hybridoma cell culture
Sigma-Aldrich
Methanol, NMR reference standard
USP
Nifedipine, United States Pharmacopeia (USP) Reference Standard